Skip to main content

Advertisement

Log in

Tumor–stromal interactions of the bone microenvironment: in vitro findings and potential in vivo relevance in metastatic lung cancer models

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Lung cancer comprises a large variety of histological subtypes with a frequent proclivity to form bone metastasis; a condition associated with dismal prognosis. To identify common mechanisms in the development of osteolytic metastasis, we systematically screened a battery of lung cancer cell lines and developed three models of non-small cell lung cancer (NSCLC) with a common proclivity to form osseous lesions, which represented different histological subtypes. Comparative analysis revealed different incidences and latency times. These differences were correlated with cell-type-specific secretion of osteoclastogenic factors, including macrophage inflammatory protein-1α, interleukin-8 and parathyroid hormone-related protein, some of which were exacerbated in conditions that mimicked tumor–stroma interactions. In addition, a distinct signature of matrix metalloproteinase (MMP) activity derived from reciprocal tumor–stroma interactions was detected for each tumor cell line. Thus, these results suggest subtle differences in the mechanisms of bone colonization for each lung cancer subtype, but share, although each to a different degree, dual MMP and osteoclastogenic activities that are differentially enhanced upon tumor–stromal interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

i.c.:

Intracardiac

SCDC:

Single cell derived colonies

TRAP:

Tartrate-resistant acid phosphatase

qPCR:

Real time quantitative RT-PCR

MMP:

Metalloprotease

CM:

Conditioned medium

NSCLC:

Non-small cell lung cancer

SCLC:

Small-cell lung cancer

References

  1. Jemal A, Tiwari RC, Murray T, Ghafoor A, Samuels A, Ward E, Feuer EJ, Thun MJ (2004) Cancer statistics, 2004. CA Cancer J Clin 54:8–29

    Article  PubMed  Google Scholar 

  2. Tuveson DA, Jacks T (1999) Modeling human lung cancer in mice: similarities and shortcomings. Oncogene 18:5318–5324

    Article  PubMed  CAS  Google Scholar 

  3. Ginsberg RJ, Kris MG, Armstrong JG (2001) Non-small cell lung cancer. Lippencott Williams and Wilkins, Philadelphia, PA

    Google Scholar 

  4. Coleman RE (1997) Skeletal complications of malignancy. Cancer 80:1588–1594

    Article  PubMed  CAS  Google Scholar 

  5. Delea T, Langer C, McKiernan J, Liss M, Edelsberg J, Brandman J, Sung J, Raut M, Oster G (2004) The cost of treatment of skeletal-related events in patients with bone metastases from lung cancer. Oncology 67:390–396

    Article  PubMed  Google Scholar 

  6. Fidler IJ (2003) The pathogenesis of cancer metastasis: the 'seed and soil’ hypothesis revisited. Nat Rev Cancer 3:453–458

    Article  PubMed  CAS  Google Scholar 

  7. Nguyen DX, Massague J (2007) Genetic determinants of cancer metastasis. Nat Rev Genet 8:341–352

    Article  PubMed  CAS  Google Scholar 

  8. Kakonen SM, Selander KS, Chirgwin JM, Yin JJ, Burns S, Rankin WA, Grubbs BG, Dallas M, Cui Y, Guise TA (2002) Transforming growth factor-beta stimulates parathyroid hormone-related protein and osteolytic metastases via Smad and mitogen-activated protein kinase signaling pathways. J Biol Chem 277:24571–24578

    Article  PubMed  CAS  Google Scholar 

  9. Kominsky SL, Doucet M, Brady K, Weber KL (2007) TGF-beta promotes the establishment of renal cell carcinoma bone metastasis. J Bone Miner Res 22:37–44

    Article  PubMed  CAS  Google Scholar 

  10. Yin JJ, Selander K, Chirgwin JM, Dallas M, Grubbs BG, Wieser R, Massague J, Mundy GR, Guise TA (1999) TGF-beta signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development. J Clin Invest 103:197–206

    Article  PubMed  CAS  Google Scholar 

  11. Guise TA, Yin JJ, Taylor SD, Kumagai Y, Dallas M, Boyce BF, Yoneda T, Mundy GR (1996) Evidence for a causal role of parathyroid hormone-related protein in the pathogenesis of human breast cancer-mediated osteolysis. J Clin Invest 98:1544–1549

    Article  PubMed  CAS  Google Scholar 

  12. Vicent S, Luis-Ravelo D, Anton I, Garcia-Tunon I, Borras-Cuesta F, Dotor J, De Las Rivas J, Lecanda F (2008) A novel lung cancer signature mediates metastatic bone colonization by a dual mechanism. Cancer Res 68:2275–2285

    Article  PubMed  CAS  Google Scholar 

  13. Chen JJ, Peck K, Hong TM, Yang SC, Sher YP, Shih JY, Wu R, Cheng JL, Roffler SR, Wu CW et al (2001) Global analysis of gene expression in invasion by a lung cancer model. Cancer Res 61:5223–5230

    PubMed  CAS  Google Scholar 

  14. Onn A, Isobe T, Itasaka S, Wu W, O'Reilly MS, Ki Hong W, Fidler IJ, Herbst RS (2003) Development of an orthotopic model to study the biology and therapy of primary human lung cancer in nude mice. Clin Cancer Res 9:5532–5539

    PubMed  CAS  Google Scholar 

  15. Kakiuchi S, Daigo Y, Tsunoda T, Yano S, Sone S, Nakamura Y (2003) Genome-wide analysis of organ-preferential metastasis of human small cell lung cancer in mice. Mol Cancer Res 1:485–499

    PubMed  CAS  Google Scholar 

  16. Liu J, Blackhall F, Seiden-Long I, Jurisica I, Navab R, Liu N, Radulovich N, Wigle D, Sultan M, Hu J et al (2004) Modeling of lung cancer by an orthotopically growing H460SM variant cell line reveals novel candidate genes for systemic metastasis. Oncogene 23:6316–6324

    Article  PubMed  CAS  Google Scholar 

  17. Khanna C, Hunter K (2005) Modeling metastasis in vivo. Carcinogenesis 26:513–523

    Article  PubMed  CAS  Google Scholar 

  18. Yamaura T, Murakami K, Doki Y, Sugiyama S, Misaki T, Yamada Y, Saiki I (2000) Solitary lung tumors and their spontaneous metastasis in athymic nude mice orthotopically implanted with human non-small cell lung cancer. Neoplasia 2:315–324

    Article  PubMed  CAS  Google Scholar 

  19. Yang M, Hasegawa S, Jiang P, Wang X, Tan Y, Chishima T, Shimada H, Moossa AR, Hoffman RM (1998) Widespread skeletal metastatic potential of human lung cancer revealed by green fluorescent protein expression. Cancer Res 58:4217–4221

    PubMed  CAS  Google Scholar 

  20. Zheng S, El-Naggar AK, Kim ES, Kurie JM, Lozano G (2007) A genetic mouse model for metastatic lung cancer with gender differences in survival. Oncogene 26:6896–6904

    Article  PubMed  CAS  Google Scholar 

  21. Jackson EL, Olive KP, Tuveson DA, Bronson R, Crowley D, Brown M, Jacks T (2005) The differential effects of mutant p53 alleles on advanced murine lung cancer. Cancer Res 65:10280–10288

    Article  PubMed  CAS  Google Scholar 

  22. Carney DN, Gazdar AF, Bepler G, Guccion JG, Marangos PJ, Moody TW, Zweig MH, Minna JD (1985) Establishment and identification of small cell lung cancer cell lines having classic and variant features. Cancer Res 45:2913–2923

    PubMed  CAS  Google Scholar 

  23. Mitsudomi T, Steinberg SM, Nau MM, Carbone D, D'Amico D, Bodner S, Oie HK, Linnoila RI, Mulshine JL, Minna JD et al (1992) p53 gene mutations in non-small-cell lung cancer cell lines and their correlation with the presence of ras mutations and clinical features. Oncogene 7:171–180

    PubMed  CAS  Google Scholar 

  24. Mitsudomi T, Viallet J, Mulshine JL, Linnoila RI, Minna JD, Gazdar AF (1991) Mutations of ras genes distinguish a subset of non-small-cell lung cancer cell lines from small-cell lung cancer cell lines. Oncogene 6:1353–1362

    PubMed  CAS  Google Scholar 

  25. Hernandez I, Moreno JL, Zandueta C, Montuenga L, Lecanda F (2010) Novel alternatively spliced ADAM8 isoforms contribute to the aggressive bone metastatic phenotype of lung cancer. Oncogene 29:3758–3769

    Article  PubMed  CAS  Google Scholar 

  26. Eltarhouny SA, Elsawy WH, Radpour R, Hahn S, Holzgreve W, Zhong XY (2008) Genes controlling spread of breast cancer to lung “gang of 4”. Exp Oncol 30:91–95

    PubMed  CAS  Google Scholar 

  27. Tester AM, Waltham M, Oh SJ, Bae SN, Bills MM, Walker EC, Kern FG, Stetler-Stevenson WG, Lippman ME, Thompson EW (2004) Pro-matrix metalloproteinase-2 transfection increases orthotopic primary growth and experimental metastasis of MDA-MB-231 human breast cancer cells in nude mice. Cancer Res 64:652–658

    Article  PubMed  CAS  Google Scholar 

  28. Zhao Q, Guo X, Nash GB, Stone PC, Hilkens J, Rhodes JM, Yu LG (2009) Circulating galectin-3 promotes metastasis by modifying MUC1 localization on cancer cell surface. Cancer Res 69:6799–6806

    Article  PubMed  CAS  Google Scholar 

  29. Roodman GD (2001) Biology of osteoclast activation in cancer. J Clin Oncol 19:3562–3571

    PubMed  CAS  Google Scholar 

  30. Han JH, Choi SJ, Kurihara N, Koide M, Oba Y, Roodman GD (2001) Macrophage inflammatory protein-1alpha is an osteoclastogenic factor in myeloma that is independent of receptor activator of nuclear factor kappaB ligand. Blood 97:3349–3353

    Article  PubMed  CAS  Google Scholar 

  31. Iguchi H, Tanaka S, Ozawa Y, Kashiwakuma T, Kimura T, Hiraga T, Ozawa H, Kono A (1996) An experimental model of bone metastasis by human lung cancer cells: the role of parathyroid hormone-related protein in bone metastasis. Cancer Res 56:4040–4043

    PubMed  CAS  Google Scholar 

  32. Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM, Cordon-Cardo C, Guise TA, Massague J (2003) A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3:537–549

    Article  PubMed  CAS  Google Scholar 

  33. Asou Y, Rittling SR, Yoshitake H, Tsuji K, Shinomiya K, Nifuji A, Denhardt DT, Noda M (2001) Osteopontin facilitates angiogenesis, accumulation of osteoclasts, and resorption in ectopic bone. Endocrinology 142:1325–1332

    Article  PubMed  CAS  Google Scholar 

  34. Bendre MS, Gaddy-Kurten D, Mon-Foote T, Akel NS, Skinner RA, Nicholas RW, Suva LJ (2002) Expression of interleukin 8 and not parathyroid hormone-related protein by human breast cancer cells correlates with bone metastasis in vivo. Cancer Res 62:5571–5579

    PubMed  CAS  Google Scholar 

  35. Bendre MS, Margulies AG, Walser B, Akel NS, Bhattacharrya S, Skinner RA, Swain F, Ramani V, Mohammad KS, Wessner LL et al (2005) Tumor-derived interleukin-8 stimulates osteolysis independent of the receptor activator of nuclear factor-kappaB ligand pathway. Cancer Res 65:11001–11009

    Article  PubMed  CAS  Google Scholar 

  36. Thiolloy S, Halpern J, Holt GE, Schwartz HS, Mundy GR, Matrisian LM, Lynch CC (2009) Osteoclast-derived matrix metalloproteinase-7, but not matrix metalloproteinase-9, contributes to tumor-induced osteolysis. Cancer Res 69:6747–6755

    Article  PubMed  CAS  Google Scholar 

  37. Catena R, Luis-Ravelo D, Anton I, Zandueta C, Salazar-Colocho P, Larzabal L, Calvo A, Lecanda F (2011) PDGFR signaling blockade in marrow stroma impairs lung cancer bone metastasis. Cancer Res 71:164–174

    Article  PubMed  CAS  Google Scholar 

  38. Yin JJ, Pollock CB, Kelly K, Kakonen SM, Selander KS, Chirgwin JM, Burns S, Rankin WA, Grubbs BG, Dallas M et al (2005) Mechanisms of cancer metastasis to the bone. Cell Res 15:57–62

    Article  PubMed  CAS  Google Scholar 

  39. Iguchi H, Onuma E, Sato K, Ogata E (2001) Involvement of parathyroid hormone-related protein in experimental cachexia induced by a human lung cancer-derived cell line established from a bone metastasis specimen. Int J Cancer 94:24–27

    Article  PubMed  CAS  Google Scholar 

  40. Tisdale MJ (2002) Cachexia in cancer patients. Nat Rev Cancer 2:862–871

    Article  PubMed  CAS  Google Scholar 

  41. Zhou X, Wang JL, Lu J, Song Y, Kwak KS, Jiao Q, Rosenfeld R, Chen Q, Boone T, Simonet WS et al (2011) Reversal of cancer cachexia and muscle wasting by ActRIIB antagonism leads to prolonged survival. Cell 142:531–543

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Pina for his valuable help assessing radiographs and the members of the Morphology Core facility and Animal Core Facilities. This work was supported by “UTE project FIMA” agreement, and RTICC C03/10, FIT-090100-2005-46, PI042284, PI070031, SAF-2009-11280 (to FL), Royo Foundation (SV), FPU (DL-R and KV), and Basque Government (IA). FL is also supported by funds from the I3 Program, “La Caixa Foundation”, and grants 67/2005, 09/2009 from the Government of Navarra. There are no conflicts of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Lecanda.

Additional information

D. Luis-Ravelo, I. Antón and S. Vicent have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 913 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luis-Ravelo, D., Antón, I., Vicent, S. et al. Tumor–stromal interactions of the bone microenvironment: in vitro findings and potential in vivo relevance in metastatic lung cancer models. Clin Exp Metastasis 28, 779–791 (2011). https://doi.org/10.1007/s10585-011-9409-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-011-9409-5

Keywords

Navigation