Skip to main content
Log in

Cross-species chromosome painting in Cetartiodactyla: Reconstructing the karyotype evolution in key phylogenetic lineages

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Recent molecular and morphological studies place Artiodactyla and Cetacea into the order Cetartiodactyla. Within the Cetartiodactyla such families as Bovidae, Cervidae, and Suidae are well studied by comparative chromosome painting, but many taxa that are crucial for understanding cetartiodactyl phylogeny remain poorly studied. Here we present the genome-wide comparative maps of five cetartiodactyl species obtained by chromosome painting with human and dromedary paint probes from four taxa: Cetacea, Hippopotamidae, Giraffidae, and Moschidae. This is the first molecular cytogenetic report on pilot whale, hippopotamus, okapi, and Siberian musk deer. Our results, when integrated with previously published comparative chromosome maps allow us to reconstruct the evolutionary pathway and rates of chromosomal rearrangements in Cetartiodactyla. We hypothesize that the putative cetartiodactyl ancestral karyotype (CAK) contained 25–26 pairs of autosomes, 2n = 52–54, and that the association of human chromosomes 8/9 could be a cytogenetic signature that unites non-camelid cetartiodactyls. There are no unambiguous cytogenetic landmarks that unite Hippopotamidae and Cetacea. If we superimpose chromosome rearrangements on the supertree generated by Price and colleagues, several homoplasy events are needed to explain cetartiodactyl karyotype evolution. Our results apparently favour a model of non-random breakpoints in chromosome evolution. Cetariodactyl karyotype evolution is characterized by alternating periods of low and fast rates in various lineages. The highest rates are found in Suina (Suidae+Tayasuidae) lineage (1.76 rearrangements per million years (R/My)) and the lowest in Cetaceans (0.07 R/My). Our study demonstrates that the combined use of human and camel paints is highly informative for revealing evolutionary karyotypic rearrangements among cetartiodactyl species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

2n:

diploid number of chromosomes

BAC:

bacterial artificial chromosome

BTA:

Bos taurus

CAK:

cetartiodactyl ancestral karyotype

CDR:

Camelus dromedarius

DOP-PCR:

degenerate oligonucleotide primer–polymerase chain reaction

FISH:

fluorescence in-situ hybridization

GCA:

Giraffa camelopardalis

GME:

Globicephala melas

GTG:

banding G banding by trypsin using Giemsa

HAM:

Hippopotamus amphibius

HSA:

Homo sapiens

MMO:

Moschus moschiferus

Mya:

million years ago

OJO:

Okapia johnstoni

PAUP:

phylogenetic analysis using parsimony

PTA:

Pecari tajacu

R/My:

rearrangements per million years

SSC:

Sus scrofa

References

  • Adega F, Chaves R, Kofler A et al (2006) High-resolution comparative chromosome painting in the Arizona collared peccary (Pecari tajacu, Tayassuidae): a comparison with the karyotype of pig and sheep. Chromosome Res 14:243–251

    Article  PubMed  CAS  Google Scholar 

  • Allard MW, Miyamoto MM, Jarecki L, Kraus F, Tennant MR (1992) DNA systematics and evolution of the artiodactyl family Bovidae. Proc Natl Acad Sci USA 89:3972–3976

    Article  PubMed  CAS  Google Scholar 

  • Arnason U (1972) The role of chromosomal rearrangements in mammalian speciation with special reference to Cetacea and Pinnipedia. Hereditas 70:113–118

    PubMed  CAS  Google Scholar 

  • Arnason U (1974) Comparative chromosome studies in Cetacea. Heredidas 77:1–36

    Article  CAS  Google Scholar 

  • Arnason U, Gullberg A (1996) Cytochrome b nucleotide sequences and the identification of five primary lineages of extant cetaceans. Mol Biol Evol 13:407–417

    PubMed  CAS  Google Scholar 

  • Arnason U, Gullberg A, Gretarsdottir S, Ursing B, Janke A (2000) The mitochondrial genome of the sperm whale and a new molecular reference for estimating eutherian divergence dates. J Mol Evol 50:569–578

    PubMed  CAS  Google Scholar 

  • Avise JC, Robinson TJ (2008) Hemiplasy: a new term in the lexicon of phylogenetics. Sys Biol 57:503–507

    Article  Google Scholar 

  • Bailey JA, Baertsch R, Kent WJ, Haussler D, Eichler EE (2004) Hotspots of mammalian chromosomal evolution. Genome Biology 5:R 23

    Article  Google Scholar 

  • Bajpai S, Gingerich PD (1998) A new Eocene archaeocete (Mammalia,Cetacea) from India and the time of origin of whales. Proc Natl Acad Sci USA 95:15464–15468

    Article  PubMed  CAS  Google Scholar 

  • Balmus G, Trifonov VA, Biltueva LS (2007) Cross species painting among camel, cattle, pig and human: further insights into the putative Cetartiodactyla ancestral karyotype. Chromosome Res 15:499–514

    Article  PubMed  CAS  Google Scholar 

  • Beck RMD, Bininda-Emonds ORP, Cardillo M, Liu FGR, Purvis A (2006) A higher-level MRP supertree of placental mammals. BMC Evol Biol 6:93

    Article  PubMed  Google Scholar 

  • Behrensmeyer AK, Deino AL, Hill A, Kingston JD, Saunders JJ (2002) Geology and geochronology of the middle Miocene Kipsaramon site complex, Muruyur Beds, Tugen Hills, Kenya. J Hum Evol 42:11–38

    Article  PubMed  Google Scholar 

  • Bielec PE, Gallagher DS, Womack JE, Busbee DL (1998) Homologies between human and dolphin chromosomes detected by heterologous chromosome painting. Cytogenet Cell Genet 81:18–26

    Article  PubMed  CAS  Google Scholar 

  • Biltueva LS, Yang F, Vorobieva NV, Graphodatsky AS (2004) Comparative map between the domestic pig and dog. Mamm Genome 15:809–818

    Article  PubMed  CAS  Google Scholar 

  • Bininda-Emonds ORP, Cardillo M, Jones KE et al (2007) The delayed rise of present-day mammals. Nature 446:507–512

    Article  PubMed  CAS  Google Scholar 

  • Boisserie JR, Lihoreau F, Brunet M (2005a) The position of hippopotamidae within cetartiodactyla. Proc Natl Acad Sci USA 102(5):1537–1541

    Article  PubMed  CAS  Google Scholar 

  • Boisserie JR, Lihoreau F, Brunet M (2005b) Origins of Hippopotamidae (Mammalia, Cetartiodactyla): towards resolution. Zool Scr 34(2):119–143

    Article  Google Scholar 

  • Bonnet-Garnier A, Claro F, Thevenon S, Gantie M, Hayes H (2003) Identification by R-banding and FISH of chromosome arms involved in Robertsonian translocations in several deer species. Chromosome Res 11:649–663

    Article  PubMed  CAS  Google Scholar 

  • Bosma AA, Haan NA, Arkesteijn GJ, Yang F, Yerle M, Zijlstra C (2004) Comparative chromosome painting between the domestic pig (Sus scrofa) and two species of peccary, the collared peccary (Tayassu tajacu) and the white-lipped peccary (T. pecari): a phylogenetic perspective. Cytogenet Genome Res 105:115–121

    Article  PubMed  CAS  Google Scholar 

  • Bunch TD, Foote WC, Maciulis A (1985) Chromosome banding pattern homologies and NORs for the Bactrian camel, guanaco and llama. J Hered 76:115–118

    Google Scholar 

  • Chaves R, Froenicke L, Guedes-Pinto H, Wienberg J (2004) Multidirectional chromosome painting between the Hirola antelope (Damaliscus hunteri, Alcelaphini, Bovidae), sheep and human. Chromosome Res 12:495–503

    Article  PubMed  CAS  Google Scholar 

  • Chi J, Fu B, Nie W, Wang J, Graphodatsky AS, Yang F (2005a) New insights into the karyotypic relationships of Chinese muntjac (Muntiacus reevesi), forest musk deer (Moschus berezovskii) and gayal (Bos frontalis). Cytogenet Genome Res 108:310–316

    Article  PubMed  CAS  Google Scholar 

  • Chi JX, Huang L, Nie W, Wang J, Fu B, Yang F (2005b) Defining the orientation of the tandem fusions that occurred during the evolution of Indian muntjac chromosomes by BAC mapping. Chromosoma 114(3):167–172

    Article  PubMed  CAS  Google Scholar 

  • Ferguson-Smith MA (1997) Genetic analysis by chromosome sorting and painting: phylogenetic and diagnostic applications. Eur J Hum Genet 5:253–265

    PubMed  CAS  Google Scholar 

  • Fernandez MH, Vrba ES (2005) A complete estimate of the phylogenetic relationships in Ruminantia: a dated species-level supertree of the extant ruminants. Biol Rev 80:269–302

    Article  Google Scholar 

  • Fitch WM, Beintema JJ (1999) Correcting parsimonious trees for unseen nucleotide substitutions: the effect of dense branching as exemplified by ribonuclease. Mol Biol Evol 7(5):438–443

    Google Scholar 

  • Fontana F, Rubini M (1990) Chromosome evolution in Cervidae. Biosystems 24:157–174

    Article  PubMed  CAS  Google Scholar 

  • Froenicke L, Wienberg J (2001) Comparative chromosome painting defines the high rate of karyotype changes between pigs and bovids. Mamm Genome 12:442–449

    Article  Google Scholar 

  • Froenicke L, Caldés MG, Graphodatsky A et al (2006) Are molecular cytogenetics and bioinformatics suggesting diverging models of ancestral mammalian genomes? Genome Res 16:311–313

    Article  Google Scholar 

  • Gallagher DS, Derr JN, Womack JE (1994) Chromosome conservation among the advanced pecorans and determination of the primitive bovid karyotype. J Hered 85:204–210

    PubMed  Google Scholar 

  • Gatesy J (1997) More DNA support for a Cetacea/Hippopotamidae clade: the blood-clotting protein gene gammafibrinogen. Mol Biology Evol 14:537–543

    CAS  Google Scholar 

  • Graphodatsky AS, Sablina OV, Meyer MN et al (2000) Comparative cytogenetics of hamsters of the genus Calomyscus. Cytogenet Cell Genet 88:296–304

    Article  PubMed  CAS  Google Scholar 

  • Graphodatsky AS, Yang F, O’Brien PCM et al (2001) Phylogenetic implications of the 38 putative ancestral chromosome segments for four canid species. Cytogenet Cell Genet 92:243–247

    Article  PubMed  CAS  Google Scholar 

  • Guha S, Goyal SP, Kashyap VK (2007) Molecular phylogeny of musk deer: a genomic view with mitochondrial 16S rRNA and cytochrome b gene. Mol Phylogenet Evol 42(3):585–597

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa M, Adachi J (1996) Phylogenetic position of cetaceans relative to artiodactyls: reanalysis of mitochondrial and nuclear sequences. Mol Biol Evol 13:710–717

    PubMed  CAS  Google Scholar 

  • Hassanin A, Douzery EJP (2003) Molecular and morphological phylogenies of Ruminantia and the alternative position of the Moschidae. Syst Biol 52(2):206–228

    Article  PubMed  Google Scholar 

  • Huang L, Nie W, Wang J, Su W, Yang F (2005) Phylogenomic study of the subfamily Caprinae by cross-species chromosome painting with Chinese muntjac paints. Chromosome Res 13:389–399

    Article  PubMed  CAS  Google Scholar 

  • Huang L, Chi J, Nie W, Wang J, Yang F (2006) Phylogenomics of several deer species revealed by comparative chromosome painting with Chinese muntjac paints. Genetica 127:25–33

    Article  PubMed  Google Scholar 

  • Huang L, Nesterenko A, Nie W et al (2008) Karyotypic evolution of giraffes (Giraffa camelopardalis) revealed by cross-species chromosome painting with Chinese muntjac (Muntiacus reevesi) and human (Homo sapiens) paints. Cytogenet Genome Res 122:132–138

    Article  PubMed  CAS  Google Scholar 

  • Hsu TC, Benirschke K (1967) An atlas of mammalian chromosomes. Springer-Verlag, New York

    Google Scholar 

  • Iannuzzi L, Di Meo GP, Perucatti A, Bardaro T (1998) ZOO-FISH and R-banding reveal extensive conservation of human chromosome regions in euchromatic regions of river buffalo chromosomes. Cytogenet Cell Genet 82:210–214

    Article  PubMed  CAS  Google Scholar 

  • Janis CM (1993) Tertiary mammal evolution in the context of changing climates, vegetation, and tectonic events. Annu Rev Ecol Syst 24:467–500

    Article  Google Scholar 

  • Janis CM, Scott KM, Jacobs LL (1998) Evolution of tertiary mammals of north America. terrestrial carnivores, ungulates, and ungulatelike mammals. Cambridge University Press, Cambridge

    Google Scholar 

  • Kleineidam RG, Pesole G, Breukelman HJ, Beintema JJ, Kastelein RA (1999) Inclusion of £r Artiodactyla based on phylogenetic analysis of pancreatic ribonuclease genes. J Mol Evol 48:360–368

    Article  PubMed  CAS  Google Scholar 

  • Kuznetsova MV, Kholodova MV, Luschekina AA (2002) Phylogenetic analysis of sequences of the 12S and 16S rRNA mitochondrial genes in the family Bovidae: new evidence. Russ J Genet 38:942–950

    Article  CAS  Google Scholar 

  • Langer P (2001) Evidence from the digestive tract on phylogenetic relationships in ungulates and whales. J Zool Syst Evol Res 39:77–90

    Article  Google Scholar 

  • Lum JK, Nikaido M, Shimamura M et al (2000) Consistency of SINE insertion topology and flanking sequence tree: quantifying relationships among cetartiodactyls. Mol Biol Evol 17:1417–1424

    PubMed  CAS  Google Scholar 

  • Mahon A (2004) A molecular supertree of the Artiodactyla. In: Bininda-Emonds ORP (ed) Phylogenetic supertrees: Combining information to reveal the tree of life. Kluwer Academic Publishers, Dordrecht, pp 411–437

    Google Scholar 

  • Maniou Z, Wallis OC, Wallis M (2003) Episodic molecular evolution of pituitary growth hormone in Cetartiodactyla. J Mol Evol 58:743–753

    Article  Google Scholar 

  • Marcot JD (2007) Molecular phylogeny of terrestrial artiodactyls. In: Prothero DR, Foss SE (eds) The evolution of artiodactyls. The John Hopkins University Press, Baltimore, pp 4–18

    Google Scholar 

  • Matthee CA, Burzlaff JD, Taylor JF, Davis SK (2001) Mining the mammalian genome for artiodactyl systematics. Syst Biol 50:367–390

    Article  PubMed  CAS  Google Scholar 

  • Matthee CA, Eick G, Willows-Munro S, Montgelard C, Pardini AT, Robinson TJ (2007) Indel evolution of mammalian introns and the utility of non-coding nuclear markers in eutherian phylogenetics. Mol Phylogenet Evol 42:827–837

    Article  PubMed  CAS  Google Scholar 

  • Montgelard C, Catzejfis MF, Douzery E (1997) Phylogenetic relationships of artiodactyls and cetaceans as deduced from the comparison of cytochrome b and 12s rRNA mitochondrial sequences. Mol Biol Evol 14(5):550–559

    PubMed  CAS  Google Scholar 

  • Murphy WJ, Eizirik E, Johnson WE, Zhang YP, Ryder OA, O’Brien SJ (2001) Molecular phylogenetics and the origins of placental mammals. Nature 409:614–618

    Article  PubMed  CAS  Google Scholar 

  • Murphy WJ, Pringle TH, Tess A, Crider TA, Springer MS, Miller W (2007) Using genomic data to unravel the root of the placental mammal phylogeny. Genome Res 17:413–421

    Article  PubMed  CAS  Google Scholar 

  • Nikaido M, Rooney AP, Okada N (1999) Phylogenetic relationships among cetartiodactyls based on insertions of short and long interpersed elements: Hippopotamuses are the closest extant relatives of whales. Proc Natl Acad Sci USA 96:10261–10266

    Article  PubMed  CAS  Google Scholar 

  • Nishihara H, Hasegawa M, Okada N (2006) Pegasoferae, an unexpected mammalian clade revealed by tracking ancient retroposon insertions. Proc Natl Acad Sci USA 103:9929–9934

    Article  PubMed  CAS  Google Scholar 

  • Nowak RM (1999) Order artiodactyla. In: Walker’s mammals of the world. John Hopkins University Press, London

  • O’Leary MA, Geisler JH (1999) The position of Cetecea within Mammalia: Phylogenetic analysis of morphological data from extinct and extant taxa. Syst Biol 48:455–490

    Article  PubMed  Google Scholar 

  • Pevzner P, Tesler G (2003) Human and mouse genomic sequences reveal extensive breakpoint reuse in mammalian evolution. Proc Natl Acad Sci USA 100:7672–7677

    Article  PubMed  CAS  Google Scholar 

  • Pinton P, Schibler L, Cribiu E, Gellin J, Yerle M (2000) Localization of 113 anchor loci in pigs: improvement of the comparative map for humans, pigs, and goats. Mamm Genome 11:306–315

    Article  PubMed  CAS  Google Scholar 

  • Price SA, Bininda-Emonds ORP, Gittleman JL (2005) A complete phylogeny of the whales, dolphins and even-toed hoofed mammals (Cetartiodactyla). Biol Rev 80:445–473

    Article  PubMed  Google Scholar 

  • Robinson TJ, Ruiz-Herrera A, Avise JC (2008) Hemiplasy and homoplasy in the karyotypic phylogenies of mammals. Proc Natl Acad Sci USA 105:14477–14481

    Article  PubMed  CAS  Google Scholar 

  • Rose KD (1996) On the origin of the order Artiodactyla. Proc Natl Acad Sci USA 93:1705–1709

    Article  PubMed  CAS  Google Scholar 

  • Ryder OA (2006a) A G-stained karyotype of Massai giraffe (Giraffa camelopardalis tippelskirchi). In: O’Brien SJ, Menninger JC, Nash WG (eds) Atlas of mammalian chromosomes. Wiley-Liss, Hoboken, NJ, p 577

  • Ryder OA (2006b) A G- stained karyotype of okapi (Okapia johnstoni). In: O’Brien SJ, Menninger JC, Nash WG (eds) Atlas of mammalian chromosomes, Wiley-Liss, Hoboken, NJ, p 577

  • Seabright M (1971) A rapid banding technique for human chromosomes. Lancet 2:971–972

    Article  PubMed  CAS  Google Scholar 

  • Shimamura M, Yasue H, Ohshima K, Abe H, Kato H, Kishiro T, Goto M, Munechikak I, Okada N (1997) Molecular evidence from retroposons that whales form a clade within even toed ungulates. Nature 388:666–670

    Google Scholar 

  • Simpson CD (1984) Artiodactyls. In: Anderson S, Jones JK (eds) Orders and Families of Recent Mammals of the World. Wiley, New York, pp 563–588

  • Slate J, Stijn TCV, Anderson RM et al (2002) A deer (Subfamily Cervinae) genetic linkage map and the evolution of ruminant genomes. Genetics 160:1587–1597

    PubMed  CAS  Google Scholar 

  • Stanley HF, Kadwell M, Wheeler JC (1994) Molecular evolution of the family Camelidae: a mitochondrial study. Proc R Soc Lond B 256:1–6

    Article  CAS  Google Scholar 

  • Stanyon R (2006) A G- stained karyotype of hippopotamus (Hippopotamus amphibius). In: O’Brien SJ, Menninger JC, Nash WG (eds) Atlas of Mammalian Chromosomes. Wiley-Liss, Hoboken, NJ, p 573

  • Su B, Wang YX, Lan H, Wang W, Zhang Y (1999) Phylogenetic study of complete cytochrome b genes in musk deer (genus Moschus) using museum samples. Mol Phylogenet Evol 12:241–249

    Article  PubMed  CAS  Google Scholar 

  • Telenius H, Carter NP, Bebb CE, Nordenskjold M, Ponder BA, Tunnacliffe A (1992) Degenerate oligonucleotide-primed PCR: general amplification of target DNA by a single degenerate primer. Genomics 13:718–725

    Article  PubMed  CAS  Google Scholar 

  • Theodor JM (2004) Molecular clock divergence estimates and the fossil record of Cetartiodactyla. J Paleontol 78:39–44

    Article  Google Scholar 

  • Trifonov VA, Stanyon R, Nesterenko AI et al (2008) Multidirectional cross-species painting illuminates the history of karyotypic evolution in Perissodactyla. Chromosome Res 16:89–107

    Article  PubMed  CAS  Google Scholar 

  • Ursing BM, Arnason U (1998) Analyses of mitochondrial genomes strongly support a hippopotamus–whale clade. Proc R Soc Lond B 265:2251–2255

    Article  CAS  Google Scholar 

  • Volleth M, Heller KG, Pfeiffer RA, Hameister H (2002) A comparative ZOO-FISH analysis in bats elucidates the phylogenetic relationships between Megachiroptera and five microchiropteran families. Chromosome Res 10:477–497

    Article  PubMed  CAS  Google Scholar 

  • Wurster DH, Benirschke K (1968) Chromosome studies in the superfamily Bovoidea. Chromosoma 25:152–171

    Article  PubMed  CAS  Google Scholar 

  • Yang F, O’Brien PC, Wienberg J, Ferguson-Smith MA (1997a) A reappraisal of the tandem fusion theory of karyotype evolution in the Indian muntjac using chromosome painting. Chromosome Res 5:109–117

    Article  PubMed  CAS  Google Scholar 

  • Yang F, O’Brien PC, Wienberg J, Neitzel H, Lin CC, Ferguson-Smith MA (1997b) Chromosomal evolution of the Chinese muntjac (Muntiacus reevesi). Chromosoma 106:37–43

    Article  PubMed  CAS  Google Scholar 

  • Yang F, O’Brien PC, Wienberg J, Ferguson-Smith MA (1997c) Evolution of the black muntjac (Muntiacus crinifrons) karyotype revealed by comparative chromosome painting. Cytogenet Cell Genet 76:159–163

    Article  PubMed  CAS  Google Scholar 

  • Yang F, O’Brien PC, Milne BS et al (1999) A complete comparative chromosome map for the dog, red fox, and human and its integration with canine genetic maps. Genomics 62:189–202

    Article  PubMed  CAS  Google Scholar 

  • Yang F, Fu B, O’Brien PC, Robinson TJ, Ryder OA, Ferguson-Smith MA (2003) Karyotypic relationships of horses and zebras: results of cross-species chromosome painting. Cytogenet Genome Res 102:235–343

    Article  PubMed  CAS  Google Scholar 

  • Yang F, Fu B, O’Brien PC, Nie W, Ryder OA, Ferguson-Smith MA (2004) Refined genome-wide comparative map of the domestic horse, donkey and human based on cross-species chromosome painting: insight into the occasional fertility of mules. Chromosome Res 12:65–76

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded in part by the research grants of the Russian Fund for Basic Research, programs of the Russian Academy of Science MCB, BOE, and Integration program of the Siberian Branch of the Russian Academy of Science (A.S.G.) and a Wellcome Trust grant to M.A.F.-S.

R.S. was partially supported by a grant ‘Mobility of Italian and foreign researchers residing abroad’ from the Italian Ministry of Universities and Research. F.Y. is supported by the Wellcome Trust. We gratefully acknowledge Stephen O’Brien (Laboratory of Genomic Diversity, NCI-Frederick) for providing cell lines of whale and okapi; Marlys Houck and Oliver A. Ryder (Frozen Zoo of San Diego Zoo’s Conservation Research Center, CA) for providing hippo and giraffe cell lines; and Michael Dean, M. Thompson (NCI-Frederick) for help in providing giraffe samples.

R.S. would like to acknowledge Lutz Froenike for discussion and comments on whale phylogenetics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir A. Trifonov.

Additional information

Responsible Editor: Herbert Macgregor.

Electronic supplementary material

Below is the image is a link to a high resolution version

Supplementary Fig. S1

FISH examples of localization of some human (HSA) and dromedary (CDR) probes onto studied species (JPG 1.29 MB)

Supplementary Fig. S2

FISH of dromedary (CDR) painting probes onto cow (BTA) and pig (SSC), with additional signals revealed (JPG 571 kb)

Supplementary Fig. S3

Supplementary figure S3 Schemes of possible chromosome rearrangements for two conserved associations: CDR 23/21/9/13 and CDR 4/31 (JPG 1.21 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kulemzina, A.I., Trifonov, V.A., Perelman, P.L. et al. Cross-species chromosome painting in Cetartiodactyla: Reconstructing the karyotype evolution in key phylogenetic lineages. Chromosome Res 17, 419–436 (2009). https://doi.org/10.1007/s10577-009-9032-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-009-9032-3

Keywords

Navigation