Skip to main content
Log in

Macrophages Generate Pericytes in the Developing Brain

  • Commentary
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Pericytes are defined by their anatomical location encircling blood vessels' walls with their long projections. The exact embryonic sources of cerebral pericytes remain poorly understood, especially because of their recently revealed diversity. Yamamoto et al. (Sci Rep 7(1):3855, 2017) using state-of-the-art techniques, including several transgenic mice models, reveal that a subpopulation of brain pericytes are derived from phagocytic macrophages during vascular development. This work highlights a new possible ancestor of brain pericytes. The emerging knowledge from this research may provide new approaches for the treatment of several neurodevelopmental disorders in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Allsopp G, Gamble HJ (1979) An electron microscopic study of the pericytes of the developing capillaries in human fetal brain and muscle. J Anat 128(Pt 1):155–168

    CAS  PubMed  PubMed Central  Google Scholar 

  • Almeida VM, Paiva AE, Sena IFG, Mintz A, Magno LAV, Birbrair A (2017) Pericytes make spinal cord breathless after injury. Neuroscientist (in press)

  • Andreotti JP, Lousado L, Magno LAV, Birbrair A (2017) Hypothalamic neurons take center stage in the neural stem cell niche. Cell Stem Cell 21(3):293–294. doi:10.1016/j.stem.2017.08.005

  • Armulik A, Genove G, Betsholtz C (2011) Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell 21(2):193–215. doi:10.1016/j.devcel.2011.07.001

    Article  CAS  PubMed  Google Scholar 

  • Asada N, Kunisaki Y, Pierce H, Wang Z, Fernandez NF, Birbrair A, Ma’ayan A, Frenette PS (2017) Differential cytokine contributions of perivascular haematopoietic stem cell niches. Nat Cell Biol 19(3):214–223. doi:10.1038/ncb3475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asahina K, Zhou B, Pu WT, Tsukamoto H (2011) Septum transversum-derived mesothelium gives rise to hepatic stellate cells and perivascular mesenchymal cells in developing mouse liver. Hepatology 53(3):983–995. doi:10.1002/hep.24119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Austyn JM, Gordon S (1981) F4/80, a monoclonal antibody directed specifically against the mouse macrophage. Eur J Immunol 11(10):805–815

    Article  CAS  PubMed  Google Scholar 

  • Azevedo PO, Lousado L, Paiva AE, Andreotti JP, Santos GSP, Sena IFG, Prazeres PHDM, Filev R, Mintz A, Birbrair A (2017) Endothelial cells maintain neural stem cells quiescent in their niche. Neuroscience. doi:10.1016/j.neuroscience.2017.08.059

  • Bechmann I, Priller J, Kovac A, Bontert M, Wehner T, Klett FF, Bohsung J, Stuschke M, Dirnagl U, Nitsch R (2001) Immune surveillance of mouse brain perivascular spaces by blood-borne macrophages. Eur J Neurosci 14(10):1651–1658

    Article  CAS  PubMed  Google Scholar 

  • Bell RD, Winkler EA, Sagare AP, Singh I, LaRue B, Deane R, Zlokovic BV (2010) Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron 68(3):409–427. doi:10.1016/j.neuron.2010.09.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergwerff M, Verberne ME, DeRuiter MC, Poelmann RE, Gittenberger-de Groot AC (1998) Neural crest cell contribution to the developing circulatory system: implications for vascular morphology? Circ Res 82(2):221–231

    Article  CAS  PubMed  Google Scholar 

  • Birbrair A, Delbono O (2015) Pericytes are essential for skeletal muscle formation. Stem Cell Rev 11(4):547–548. doi:10.1007/s12015-015-9588-6

    Article  PubMed  Google Scholar 

  • Birbrair A, Frenette PS (2016) Niche heterogeneity in the bone marrow. Ann N Y Acad Sci. doi:10.1111/nyas.13016

    PubMed  PubMed Central  Google Scholar 

  • Birbrair A, Wang ZM, Messi ML, Enikolopov GN, Delbono O (2011) Nestin-GFP transgene reveals neural precursor cells in adult skeletal muscle. PLoS ONE 6(2):e16816. doi:10.1371/journal.pone.0016816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birbrair A, Zhang T, Wang ZM, Messi ML, Enikolopov GN, Mintz A, Delbono O (2013a) Role of pericytes in skeletal muscle regeneration and fat accumulation. Stem Cells Dev 22(16):2298–2314. doi:10.1089/scd.2012.0647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birbrair A, Zhang T, Wang ZM, Messi ML, Enikolopov GN, Mintz A, Delbono O (2013b) Skeletal muscle neural progenitor cells exhibit properties of NG2-glia. Exp Cell Res 319(1):45–63. doi:10.1016/j.yexcr.2012.09.008

    Article  CAS  PubMed  Google Scholar 

  • Birbrair A, Zhang T, Wang ZM, Messi ML, Enikolopov GN, Mintz A, Delbono O (2013c) Skeletal muscle pericyte subtypes differ in their differentiation potential. Stem Cell Res 10(1):67–84. doi:10.1016/j.scr.2012.09.003

    Article  CAS  PubMed  Google Scholar 

  • Birbrair A, Zhang T, Wang ZM, Messi ML, Mintz A, Delbono O (2013d) Type-1 pericytes participate in fibrous tissue deposition in aged skeletal muscle. Am J Physiol Cell Physiol 305(11):C1098–C1113. doi:10.1152/ajpcell.00171.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birbrair A, Zhang T, Files DC, Mannava S, Smith T, Wang Z-M, Messi ML, Mintz A, Delbono O (2014a) Type-1 pericytes accumulate after tissue injury and produce collagen in an organ-dependent manner. Stem Cell Res Ther 5(6):122. doi:10.1186/scrt512

    Article  PubMed  PubMed Central  Google Scholar 

  • Birbrair A, Zhang T, Wang ZM, Messi ML, Mintz A, Delbono O (2014b) Pericytes: multitasking cells in the regeneration of injured, diseased, and aged skeletal muscle. Front Aging Neurosci 6:245. doi:10.3389/fnagi.2014.00245

    Article  PubMed  PubMed Central  Google Scholar 

  • Birbrair A, Zhang T, Wang ZM, Messi ML, Olson JD, Mintz A, Delbono O (2014c) Type-2 pericytes participate in normal and tumoral angiogenesis. Am J Physiol Cell Physiol 307(1):C25–C38. doi:10.1152/ajpcell.00084.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birbrair A, Zhang T, Wang ZM, Messi ML, Mintz A, Delbono O (2015) Pericytes at the intersection between tissue regeneration and pathology. Clin Sci 128(2):81–93. doi:10.1042/CS20140278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birbrair A, Borges IDT, Gilson Sena IF, Almeida GG, da Silva Meirelles L, Goncalves R, Mintz A, Delbono O (2017a) How plastic are pericytes? Stem Cells Dev. doi:10.1089/scd.2017.0044

    PubMed  Google Scholar 

  • Birbrair A, Sattiraju A, Zhu D, Zulato G, Batista I, Nguyen VT, Messi ML, Solingapuram Sai KK, Marini FC, Delbono O, Mintz A (2017b) Novel peripherally derived neural-like stem cells as therapeutic carriers for treating glioblastomas. Stem Cells Transl Med 6(2):471–481. doi:10.5966/sctm.2016-0007

    Article  CAS  PubMed  Google Scholar 

  • Biswas SK, Mantovani A (2010) Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol 11(10):889–896. doi:10.1038/ni.1937

    Article  CAS  PubMed  Google Scholar 

  • Borges IDT, Sena IFG, de Azevedo PO, Andreotti JP, de Almeida VM, de Paiva AE, Pinheiro Dos Santos GS, de Paula Guerra DA, Dias Moura Prazeres PH, Mesquita LL, Silva LSB, Leonel C, Mintz A, Birbrair A (2017) Lung as a niche for hematopoietic progenitors. Stem Cell Rev Rep. doi:10.1007/s12015-017-9747-z

    Google Scholar 

  • Chen Q, Zhang H, Liu Y, Adams S, Eilken H, Stehling M, Corada M, Dejana E, Zhou B, Adams RH (2016) Endothelial cells are progenitors of cardiac pericytes and vascular smooth muscle cells. Nat Commun 7:12422. doi:10.1038/ncomms12422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chitu V, Stanley ER (2006) Colony-stimulating factor-1 in immunity and inflammation. Curr Opin Immunol 18(1):39–48. doi:10.1016/j.coi.2005.11.006

    Article  CAS  PubMed  Google Scholar 

  • Chow A, Huggins M, Ahmed J, Hashimoto D, Lucas D, Kunisaki Y, Pinho S, Leboeuf M, Noizat C, van Rooijen N, Tanaka M, Zhao ZJ, Bergman A, Merad M, Frenette PS (2013) CD169(+) macrophages provide a niche promoting erythropoiesis under homeostasis and stress. Nat Med 19(4):429–436. doi:10.1038/nm.3057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coatti GC, Frangini M, Valadares MC, Gomes JP, Lima NO, Cavacana N, Assoni AF, Pelatti MV, Birbrair A, de Lima ACP, Singer JM, Rocha FMM, Da Silva GL, Mantovani MS, Macedo-Souza LI, Ferrari MFR, Zatz M (2017) Pericytes extend survival of ALS SOD1 mice and induce the expression of antioxidant enzymes in the murine model and in IPSCs derived neuronal cells from an ALS patient. Stem Cell Rev. doi:10.1007/s12015-017-9752-2

    PubMed  Google Scholar 

  • Crisan M, Corselli M, Chen WC, Peault B (2012) Perivascular cells for regenerative medicine. J Cell Mol Med. doi:10.1111/j.1582-4934.2012.01617.x

    Google Scholar 

  • Croker BA, Metcalf D, Robb L, Wei W, Mifsud S, DiRago L, Cluse LA, Sutherland KD, Hartley L, Williams E, Zhang JG, Hilton DJ, Nicola NA, Alexander WS, Roberts AW (2004) SOCS3 is a critical physiological negative regulator of G-CSF signaling and emergency granulopoiesis. Immunity 20(2):153–165

    Article  CAS  PubMed  Google Scholar 

  • de Boer J, Williams A, Skavdis G, Harker N, Coles M, Tolaini M, Norton T, Williams K, Roderick K, Potocnik AJ, Kioussis D (2003) Transgenic mice with hematopoietic and lymphoid specific expression of Cre. Eur J Immunol 33(2):314–325. doi:10.1002/immu.200310005

    Article  PubMed  Google Scholar 

  • Dias Moura Prazeres PH, Sena IFG, Borges IDT, de Azevedo PO, Andreotti JP, de Paiva AE, de Almeida VM, de Paula Guerra DA, Pinheiro Dos Santos GS, Mintz A, Delbono O, Birbrair A (2017) Pericytes are heterogeneous in their origin within the same tissue. Dev Biol 427(1):6–11. doi:10.1016/j.ydbio.2017.05.001

    Article  PubMed  Google Scholar 

  • Etchevers HC, Vincent C, Le Douarin NM, Couly GF (2001) The cephalic neural crest provides pericytes and smooth muscle cells to all blood vessels of the face and forebrain. Development 128(7):1059–1068

    CAS  PubMed  Google Scholar 

  • Georgiades P, Ogilvy S, Duval H, Licence DR, Charnock-Jones DS, Smith SK, Print CG (2002) VavCre transgenic mice: a tool for mutagenesis in hematopoietic and endothelial lineages. Genesis 34(4):251–256. doi:10.1002/gene.10161

    Article  CAS  PubMed  Google Scholar 

  • Gordon S, Martinez FO (2010) Alternative activation of macrophages: mechanism and functions. Immunity 32(5):593–604. doi:10.1016/j.immuni.2010.05.007

    Article  CAS  PubMed  Google Scholar 

  • Gordon S, Pluddemann A, Martinez Estrada F (2014) Macrophage heterogeneity in tissues: phenotypic diversity and functions. Immunol Rev 262(1):36–55. doi:10.1111/imr.12223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Göritz C, Dias DO, Tomilin N, Barbacid M, Shupliakov O, Frisen J (2011) A pericyte origin of spinal cord scar tissue. Science 333(6039):238–242. doi:10.1126/science.1203165

    Article  PubMed  Google Scholar 

  • Guillemin GJ, Brew BJ (2004) Microglia, macrophages, perivascular macrophages, and pericytes: a review of function and identification. J Leukoc Biol 75(3):388–397. doi:10.1189/jlb.0303114

    Article  CAS  PubMed  Google Scholar 

  • Hamann J, Koning N, Pouwels W, Ulfman LH, van Eijk M, Stacey M, Lin HH, Gordon S, Kwakkenbos MJ (2007) EMR1, the human homolog of F4/80, is an eosinophil-specific receptor. Eur J Immunol 37(10):2797–2802. doi:10.1002/eji.200737553

    Article  CAS  PubMed  Google Scholar 

  • Hamilton JA (2008) Colony-stimulating factors in inflammation and autoimmunity. Nat Rev Immunol 8(7):533–544. doi:10.1038/nri2356

    Article  CAS  PubMed  Google Scholar 

  • Iadecola C (2004) Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nat Rev Neurosci 5(5):347–360. doi:10.1038/nrn1387

    Article  CAS  PubMed  Google Scholar 

  • Joseph C, Quach JM, Walkley CR, Lane SW, Lo Celso C, Purton LE (2013) Deciphering hematopoietic stem cells in their niches: a critical appraisal of genetic models, lineage tracing, and imaging strategies. Cell Stem Cell 13(5):520–533. doi:10.1016/j.stem.2013.10.010

    Article  CAS  PubMed  Google Scholar 

  • Khan JA, Mendelson A, Kunisaki Y, Birbrair A, Kou Y, Arnal-Estape A, Pinho S, Ciero P, Nakahara F, Ma’ayan A, Bergman A, Merad M, Frenette PS (2016) Fetal liver hematopoietic stem cell niches associate with portal vessels. Science 351(6269):176–180. doi:10.1126/science.aad0084

    Article  CAS  PubMed  Google Scholar 

  • Kigerl KA, Gensel JC, Ankeny DP, Alexander JK, Donnelly DJ, Popovich PG (2009) Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci 29(43):13435–13444. doi:10.1523/JNEUROSCI.3257-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korn J, Christ B, Kurz H (2002) Neuroectodermal origin of brain pericytes and vascular smooth muscle cells. J Comp Neurol 442(1):78–88. doi:10.1002/cne.1423

    Article  PubMed  Google Scholar 

  • Lousado L, Prazeres PHDM, Andreotti JP, Paiva AE, Azevedo PO, Santos GSP, Filev R, Mintz A, Birbrair A (2017) Schwann cell precursors as a source for adrenal gland chromaffin cells. Cell Death Dis (in press)

  • Luo J, Elwood F, Britschgi M, Villeda S, Zhang H, Ding Z, Zhu L, Alabsi H, Getachew R, Narasimhan R, Wabl R, Fainberg N, James ML, Wong G, Relton J, Gambhir SS, Pollard JW, Wyss-Coray T (2013) Colony-stimulating factor 1 receptor (CSF1R) signaling in injured neurons facilitates protection and survival. J Exp Med 210(1):157–172. doi:10.1084/jem.20120412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8(12):958–969. doi:10.1038/nri2448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nathan C (2008) Metchnikoff’s legacy in 2008. Nat Immunol 9(7):695–698. doi:10.1038/ni0708-695

    Article  CAS  PubMed  Google Scholar 

  • Ogilvy S, Elefanty AG, Visvader J, Bath ML, Harris AW, Adams JM (1998) Transcriptional regulation of vav a gene expressed throughout the hematopoietic compartment. Blood 91(2):419–430

    CAS  PubMed  Google Scholar 

  • Ohnishi K, Komohara Y, Saito Y, Miyamoto Y, Watanabe M, Baba H, Takeya M (2013) CD169-positive macrophages in regional lymph nodes are associated with a favorable prognosis in patients with colorectal carcinoma. Cancer Sci 104(9):1237–1244. doi:10.1111/cas.12212

    Article  CAS  PubMed  Google Scholar 

  • Paiva AE, Lousado L, Almeida VM, Andreotti JP, Santos GSP, Azevedo PO, Sena IFG, Prazeres PHDM, Borges IT, Azevedo V, Mintz A, Birbrair A (2017) Endothelial cells as precursors for osteoblasts in the metastatic prostate cancer bone. Neoplasia (in press)

  • Perry VH, Nicoll JA, Holmes C (2010) Microglia in neurodegenerative disease. Nat Rev Neurol 6(4):193–201. doi:10.1038/nrneurol.2010.17

    Article  PubMed  Google Scholar 

  • Pixley FJ, Stanley ER (2004) CSF-1 regulation of the wandering macrophage: complexity in action. Trends Cell Biol 14(11):628–638. doi:10.1016/j.tcb.2004.09.016

    Article  CAS  PubMed  Google Scholar 

  • Que J, Wilm B, Hasegawa H, Wang F, Bader D, Hogan BL (2008) Mesothelium contributes to vascular smooth muscle and mesenchyme during lung development. Proc Natl Acad Sci USA 105(43):16626–16630. doi:10.1073/pnas.0808649105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sena IFG, Prazeres P, Santos GSP, Borges IT, Azevedo PO, Andreotti JP, Almeida VM, Paiva AE, Guerra DAP, Lousado L, Souto L, Mintz A, Birbrair A (2017a) Identity of Gli1+ cells in the bone marrow. Exp Hematol. doi:10.1016/j.exphem.2017.06.349

    PubMed  Google Scholar 

  • Sena IFG, Prazeres PHDM, Santos GSP, Borges IT, Azevedo PO, Andreotti JP, Almeida VM, Paiva AE, Guerra DAP, Lousado L, Souto L, Mintz A, Birbrair A (2017b) LepR+ cells dispute hegemony with Gli1+ cells in bone marrow fibrosis. Cell Cycle (in press)

  • Shepro D, Morel NM (1993) Pericyte physiology. FASEB J 7(11):1031–1038

    Article  CAS  PubMed  Google Scholar 

  • Shinkai Y, Lam K-P, Oltz EM, Stewart V, Mendelsohn M, Charron J, Datta M, Young F, Stall AM, Alt FW (1992) RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V (D) J rearrangement. Cell 68(5):855–867

    Article  CAS  PubMed  Google Scholar 

  • Sica A, Bronte V (2007) Altered macrophage differentiation and immune dysfunction in tumor development. J Clin Investig 117(5):1155–1166. doi:10.1172/JCI31422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simon C, Lickert H, Gotz M, Dimou L (2012) Sox10-iCreERT2: a mouse line to inducibly trace the neural crest and oligodendrocyte lineage. Genesis 50(6):506–515. doi:10.1002/dvg.22003

    Article  CAS  PubMed  Google Scholar 

  • Sims DE (1991) Recent advances in pericyte biology—implications for health and disease. Can J Cardiol 7(10):431–443

    CAS  PubMed  Google Scholar 

  • Sims DE (2000) Diversity within pericytes. Clin Exp Pharmacol Physiol 27(10):842–846

    Article  CAS  PubMed  Google Scholar 

  • Soderblom C, Luo X, Blumenthal E, Bray E, Lyapichev K, Ramos J, Krishnan V, Lai-Hsu C, Park KK, Tsoulfas P, Lee JK (2013) Perivascular fibroblasts form the fibrotic scar after contusive spinal cord injury. J Neurosci 33(34):13882–13887. doi:10.1523/JNEUROSCI.2524-13.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stark K, Eckart A, Haidari S, Tirniceriu A, Lorenz M, von Bruhl ML, Gartner F, Khandoga AG, Legate KR, Pless R, Hepper I, Lauber K, Walzog B, Massberg S (2013) Capillary and arteriolar pericytes attract innate leukocytes exiting through venules and ‘instruct’ them with pattern-recognition and motility programs. Nat Immunol 14(1):41–51. doi:10.1038/ni.2477

    Article  CAS  PubMed  Google Scholar 

  • Trost A, Lange S, Schroedl F, Bruckner D, Motloch KA, Bogner B, Kaser-Eichberger A, Strohmaier C, Runge C, Aigner L, Rivera FJ, Reitsamer HA (2016) Brain and retinal pericytes: origin, function and role. Front Cell Neurosci 10:20. doi:10.3389/fncel.2016.00020

    Article  PubMed  PubMed Central  Google Scholar 

  • Tushinski RJ, Stanley ER (1983) The regulation of macrophage protein turnover by a colony stimulating factor (CSF-1). J Cell Physiol 116(1):67–75. doi:10.1002/jcp.1041160111

    Article  CAS  PubMed  Google Scholar 

  • Wilm B, Ipenberg A, Hastie ND, Burch JB, Bader DM (2005) The serosal mesothelium is a major source of smooth muscle cells of the gut vasculature. Development 132(23):5317–5328. doi:10.1242/dev.02141

    Article  CAS  PubMed  Google Scholar 

  • Winkler EA, Bell RD, Zlokovic BV (2011) Central nervous system pericytes in health and disease. Nat Neurosci 14(11):1398–1405. doi:10.1038/nn.2946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto S, Muramatsu M, Azuma E, Ikutani M, Nagai Y, Sagara H, Koo BN, Kita S, O’Donnell E, Osawa T, Takahashi H, Takano KI, Dohmoto M, Sugimori M, Usui I, Watanabe Y, Hatakeyama N, Iwamoto T, Komuro I, Takatsu K, Tobe K, Niida S, Matsuda N, Shibuya M, Sasahara M (2017) A subset of cerebrovascular pericytes originates from mature macrophages in the very early phase of vascular development in CNS. Sci Rep 7(1):3855. doi:10.1038/s41598-017-03994-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamanishi E, Takahashi M, Saga Y, Osumi N (2012) Penetration and differentiation of cephalic neural crest-derived cells in the developing mouse telencephalon. Dev Growth Differ 54(9):785–800. doi:10.1111/dgd.12007

    Article  CAS  PubMed  Google Scholar 

  • Yamazaki T, Nalbandian A, Uchida Y, Li W, Arnold TD, Kubota Y, Yamamoto S, Ema M, Mukouyama YS (2017) Tissue myeloid progenitors differentiate into pericytes through TGF-beta signaling in developing skin vasculature. Cell Rep 18(12):2991–3004. doi:10.1016/j.celrep.2017.02.069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yotsumoto F, You WK, Cejudo-Martin P, Kucharova K, Sakimura K, Stallcup WB (2015) NG2 proteoglycan-dependent recruitment of tumor macrophages promotes pericyte-endothelial cell interactions required for brain tumor vascularization. Oncoimmunology 4(4):e1001204. doi:10.1080/2162402X.2014.1001204

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Alexander Birbrair is supported by a grant from Pró-reitoria de Pesquisa/Universidade Federal de Minas Gerais (PRPq/UFMG) (Edital 05/2016); Akiva Mintz is supported by the National Institute of Health (1R01CA179072-01A1) and by the American Cancer Society Mentored Research Scholar Grant (124443-MRSG-13-121-01-CDD).

Author information

Authors and Affiliations

Authors

Contributions

PHDMP, AEP, VMA, LL, JPA, and AB elaborated the figure. PHDMP, VMA, LL, JPA, AEP, GSPS, POA, LS, GGA, RF, AM, RG, and AB wrote the manuscript. All of the authors discussed the results in Yamamoto et al. (2017) and commented on the manuscript.

Corresponding author

Correspondence to Alexander Birbrair.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prazeres, P.H.D.M., Almeida, V.M., Lousado, L. et al. Macrophages Generate Pericytes in the Developing Brain. Cell Mol Neurobiol 38, 777–782 (2018). https://doi.org/10.1007/s10571-017-0549-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-017-0549-2

Keywords

Navigation