Skip to main content

Advertisement

Log in

Transplantation of Human Skin-Derived Mesenchymal Stromal Cells Improves Locomotor Recovery After Spinal Cord Injury in Rats

  • Brief Communication
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Spinal cord injury (SCI) is a devastating neurologic disorder with significant impacts on quality of life, life expectancy, and economic burden. Although there are no fully restorative treatments yet available, several animal and small-scale clinical studies have highlighted the therapeutic potential of cellular interventions for SCI. Mesenchymal stem cells (MSCs)—which are conventionally isolated from the bone marrow—recently emerged as promising candidates for treating SCI and have been shown to provide trophic support, ameliorate inflammatory responses, and reduce cell death following the mechanical trauma. Here we evaluated the human skin as an alternative source of adult MSCs suitable for autologous cell transplantation strategies for SCI. We showed that human skin-derived MSCs (hSD-MSCs) express a range of neural markers under standard culture conditions and are able to survive and respond to neurogenic stimulation in vitro. In addition, using histological analysis and behavioral assessment, we demonstrated as a proof-of-principle that hSD-MSC transplantation reduces the severity of tissue loss and facilitates locomotor recovery in a rat model of SCI. Altogether, the study provides further characterization of skin-derived MSC cultures and indicates that the human skin may represent an attractive source for cell-based therapies for SCI and other neurological disorders. Further investigation is needed to elucidate the mechanisms by which hSD-MSCs elicit tissue repair and/or locomotor recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  • Abrams MB, Dominguez C, Pernold K, Reger R, Wiesenfeld-Hallin Z, Olson L, Prockop D (2009) Multipotent mesenchymal stromal cells attenuate chronic inflammation and injury-induced sensitivity to mechanical stimuli in experimental spinal cord injury. Restor Neurol Neurosci 27(4):307–321

    PubMed  Google Scholar 

  • Ackery A, Tator C, Krassioukov A (2004) A global perspective on spinal cord injury epidemiology. J Neurotrauma 21(10):1355–1370

    Article  PubMed  Google Scholar 

  • Andersen J, Urbán N, Achimastou A, Ito A, Simic M, Ullom K, Martynoga B, Lebel M, Göritz C, Frisén J, Nakafuku M, Guillemot F (2014) A transcriptional mechanism integrating inputs from extracellular signals to activate hippocampal stem cells. Neuron 83(5):1085–1097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barzilay R, Kan I, Ben-Zur T, Bulvik S, Melamed E, Offen D (2008) Induction of human mesenchymal stem cells into dopamine-producing cells with different differentiation protocols. Stem Cells Dev 17(3):547–554

    Article  CAS  PubMed  Google Scholar 

  • Basso DM, Beattie MS, Bresnahan JC (1995) A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma 12(1):1–21

    Article  CAS  PubMed  Google Scholar 

  • Blondheim NR, Levy YS, Ben-Zur T, Burshtein A, Cherlow T, Kan I, Barzilay R, Bahat-Stromza M, Barhum Y, Bulvik S, Melamed E, Offen D (2006) Human mesenchymal stem cells express neural genes, suggesting a neural predisposition. Stem Cells Dev 15(2):141–164

    Article  CAS  PubMed  Google Scholar 

  • Boido M, Garbossa D, Fontanella M, Ducati A, Vercelli A (2014) Mesenchymal stem cell transplantation reduces glial cyst and improves functional outcome after spinal cord compression. World Neurosurg 81(1):183–190

    Article  PubMed  Google Scholar 

  • Bressan RB, Melo FR, Almeida PA, Bittencourt DA, Visoni S, Jeremias TS, Costa AP, Leal RB, Trentin AG (2014) EGF-FGF2 stimulates the proliferation and improves the neuronal commitment of mouse epidermal neural crest stem cells (EPI-NCSCs). Exp Cell Res 327(1):37–47

    Article  CAS  PubMed  Google Scholar 

  • Caplan AI, Dennis JE (2006) Mesenchymal stem cells as trophic mediators. J Cell Biochem 98(5):1076–1084

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Teng FY, Tang BL (2006) Coaxing bone marrow stromal mesenchymal stem cells towards neuronal differentiation: progress and uncertainties. Cell Mol Life Sci 63:1649–1657

    Article  CAS  PubMed  Google Scholar 

  • Chopp M, Xue CA, Zhang H, Li Y, Wang L, Chen J, Lu D, Lu M, Rosenblum M (2000) Spinal cord injury in rat: treatment with bone marrow stromal cell transplantation. Neuroreport 11:3001–3005

    Article  CAS  PubMed  Google Scholar 

  • Dasari VR, Veeravalli KK, Dinh DH (2014) Mesenchymal stem cells in the treatment of spinal cord injuries: a review. World J Stem Cells 6(2):120–133

    Article  PubMed  PubMed Central  Google Scholar 

  • Faiz M, Sachewsky N, Gascón S, Bang KW, Morshead CM, Nagy A (2015) Adult neural stem cells from the subventricular zone give rise to reactive astrocytes in the cortex after stroke. Cell Stem Cell 17(5):624–634

    Article  CAS  PubMed  Google Scholar 

  • Foudah D, Redondo J, Caldara C, Carini F, Tredici G, Miloso M (2013) Human mesenchymal stem cells express neuronal markers after osteogenic and adipogenic differentiation. Cell Mol Biol Lett 18(2):163–186

    Article  CAS  PubMed  Google Scholar 

  • Hofstetter CP, Schwarz EJ, Hess D, Widenfalk J, El Manira A, Prockop DJ, Olson L (2002) Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery. Proc Natl Acad Sci 99:2199–2204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeremias TS, Machado RG, Visoni SB, Pereima MJ, Leonardi DF, Trentin AG (2014) Dermal substitutes support the growth of human skin-derived mesenchymal stromal cells: potential tool for skin regeneration. PLoS One 9(2):e89542

    Article  PubMed Central  Google Scholar 

  • Jung DI, Ha J, Kang BT, Kim JW, Quan FS, Lee JH, Woo EJ, Park HM (2009) A comparison of autologous and allogenic bone marrow-derived mesenchymal stem cell transplantation in canine spinal cord injury. J Neurol Sci 285:67–77

    Article  PubMed  Google Scholar 

  • Kean TJ, Lin P, Caplan AI, Dennis JE (2013) MSCs: delivery routes and engraftment, cell-targeting strategies, and immune modulation. Stem Cells Int 2013:732742

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim N, Cho SG (2015) New strategies for overcoming limitations of mesenchymal stem cell-based immune modulation. Int J Stem Cells 8(1):54–68

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim BG, Hwang DH, Lee SI, Kim EJ, Kim SU (2007) Stem cell-based cell therapy for spinal cord injury. Cell Transplant 16(4):355–364

    Article  PubMed  Google Scholar 

  • Krabbe C, Zimmer J, Meyer M (2005) Neural transdifferentiation of mesenchymal stem cells—a critical review. APMIS 113:831–844

    Article  PubMed  Google Scholar 

  • Kwon BK, Tetzlaff W, Grauer JN, Beiner J, Vaccaro AR (2004) Pathophysiology and pharmacologic treatment of acute spinal cord injury. Spine J 4(4):451–464

    Article  PubMed  Google Scholar 

  • Lalu M, McIntyre L, Pugliese C, Fergusson D, Winston BW, Mashall JC, Granton J, Stewart DJ (2012) Safety of cell therapy with mesenchymal stromal cells (safecell): a systematic review and meta-analysis of clinical trials. Plos One 7(10):e47559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marcos AB, Forner S, Martini AC, Patrício ES, Clarke JR, Costa R, Felix-Alves J, Vieira VJ, de Andrade EL, Mazzuco TL, Calixto JB, Figueiredo CP (2015) Temporal and regional expression of glucose-dependent insulinotropic peptide and its receptor in spinal cord injured rats. J Neurotrauma 33(3):261–268

    Article  PubMed  Google Scholar 

  • Murray IR, West CC, Hardy WR, James AW, Park TS, Nguyen A, Tawonsawatruk T, Lazzari L, Soo C, Péault B (2014) Natural history of mesenchymal stem cells, from vessel walls to culture vessels. Cell Mol Life Sci 71(8):1353–1374

    Article  CAS  PubMed  Google Scholar 

  • Nakajima H, Uchida K, Guerrero AR, Watanabe S, Sugita D, Takeura N, Yoshida A, Long G, Wright KT, Johnson WE, Baba H (2012) Transplantation of mesenchymal stem cells promotes an alternative pathway of macrophage activation and functional recovery after spinal cord injury. J Neurotrauma 29:1614–1625

    Article  PubMed  PubMed Central  Google Scholar 

  • Nandoe Tewarie RS, Hurtado A, Bartels RH, Grotenhuis A, Oudega M (2009a) Stem cell-based therapies for spinal cord injury. J Spinal Cord Med 32(2):105–114

    Article  PubMed  Google Scholar 

  • Nandoe Tewarie RS, Hurtado A, Ritfeld GJ, Rahiem ST, Wendell DF, Barroso MM, Grotenhuis JA, Oudega M (2009b) Bone marrow stromal cells elicit tissue sparing after acute but not delayed transplantation into the contused adult rat thoracic spinal cord. J Neurotrauma 26:2313–2322

    Article  PubMed  Google Scholar 

  • Novikova LN, Brohlin M, Kingham PJ, Novikov LN, Wiberg M (2011) Neuroprotective and growth-promoting effects of bone marrow stromal cells after cervical spinal cord injury in adult rats. Cytotherapy 13:873–887

    Article  CAS  PubMed  Google Scholar 

  • Oliveri RS, Bello S, Biering-Sorensen F (2014) Mesenchymal stem cells improve locomotor recovery in traumatic spinal cord injury: systematic review with meta-analyses of rat models. Neurobiol Dis 62:338–353

    Article  CAS  PubMed  Google Scholar 

  • Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147

    Article  CAS  PubMed  Google Scholar 

  • Quertainmont R, Cantinieaux D, Botman O, Sid S, Schoenen J, Franzen R (2012) Mesenchymal stem cell graft improves recovery after spinal cord injury in adult rats through neurotrophic and pro-angiogenic actions. PLoS One 7:e39500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sekhon LH, Fehlings MG (2001) Epidemiology, demographics, and pathophysiology of acute spinal cord injury. Spine 26:S2–12

    Article  CAS  PubMed  Google Scholar 

  • Thuret S, Moon LDF, Gage FH (2006) Therapeutic interventions after spinal cord injury. Nat Rev Neurosci 7:628–643

    Article  CAS  PubMed  Google Scholar 

  • Vanicky I, Urdzikova L, Saganova K, Cizkova D, Galik J (2001) A simple and reproducible model of spinal cord injury induced by epidural balloon inflation in the rat. J Neurotrauma 18:1399–1407

    Article  CAS  PubMed  Google Scholar 

  • Vawda R, Fehlings MG (2013) Mesenchymal cells in the treatment of spinal cord injury: current & future perspectives. Curr Stem Cell Res Ther 8(1):25–38

    Article  CAS  PubMed  Google Scholar 

  • Zhu T, Tang Q, Gao H, Shen Y, Chen L, Zhu J (2014) Current status of cell-mediated regenerative therapies for human spinal cord injury. Neurosci Bull 30(4):671–682

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministério da Saúde (MS-SCTIE-DECIT), Ministério da Ciência, Tecnologia e Inovação/Conselho Nacional de Desenvolvimento Científico e Tecnológico (MCTI/CNPq/Brazil), CNPq/PIBIC/PIBIT (Brazil), Coordenação de Aperfeiçamento de Pessoal de Nível Superior (CAPES, Brazil), Instituto Nacional de Neurociência Translacional (MCTI/INNT), and Fundação de Amparo à Pesquisa do Estado de Santa Catarina (FAPESC, Brazil). RBB is supported by a fellowship from the Science Without Borders Program (CAPES, Brazil).

Author Contributions

Conceived and designed the experiments: FRM, RBB, SF, GAR, AGT. Performed the experiments: FRM, SF, ACM, MR, PBD. Analyzed the data: FRM, SF, ACM, RBB, CPF. Wrote the manuscript: RBB, CPF, AGT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Gonçalves Trentin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Fernanda Rosene Melo, Raul Bardini Bressan, Stefânia Forner have contributed equally to this work.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 18 kb)

10571_2016_414_MOESM2_ESM.pdf

Supplementary Fig S1 Percentage of ßIII-tubulin- and GFAP-positive in the different cultures conditions tested. Values represent the percentage of posive cells in relation to total cell number are expressed as mean ± S.E.M of 20 random fields in three independent experiments. Differences were not statistically significant by one-way ANOVA. (PDF 61 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melo, F.R., Bressan, R.B., Forner, S. et al. Transplantation of Human Skin-Derived Mesenchymal Stromal Cells Improves Locomotor Recovery After Spinal Cord Injury in Rats. Cell Mol Neurobiol 37, 941–947 (2017). https://doi.org/10.1007/s10571-016-0414-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-016-0414-8

Keywords

Navigation