Skip to main content

Advertisement

Log in

Contribution of Hippocampal 5-HT3 Receptors in Hippocampal Autophagy and Extinction of Conditioned Fear Responses after a Single Prolonged Stress Exposure in Rats

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

One of the hypotheses about the pathogenesis of posttraumatic stress disorder (PTSD) is the dysfunction of serotonin (5-HT) neurotransmission. While certain 5-HT receptor subtypes are likely critical for the symptoms of PTSD, few studies have examined the role of 5-HT3 receptor in the development of PTSD, even though 5-HT3 receptor is critical for contextual fear extinction and anxiety-like behavior. Therefore, we hypothesized that stimulation of 5-HT3 receptor in the dorsal hippocampus (DH) could prevent hippocampal autophagy and the development of PTSD-like behavior in animals. To this end, we infused SR57227, selective 5-HT3 agonist, into the DH after a single prolonged stress (SPS) treatment in rats. Three weeks later, we evaluated the effects of this pharmacological treatment on anxiety-related behaviors and extinction of contextual fear memory. We also accessed hippocampal autophagy and the expression of 5-HT3A subunit, Beclin-1, LC3-I, and LC3-II in the DH. We found that SPS treatment did not alter anxiety-related behaviors but prolonged the extinction of contextual fear memory, and such a behavioral phenomenon was correlated with increased hippocampal autophagy, decreased 5-HT3A expression, and increased expression of Beclin-1 and LC3-II/LC3-I ratio in the DH. Furthermore, intraDH infusions of SR57227 dose-dependently promoted the extinction of contextual fear memory, prevented hippocampal autophagy, and decreased expression of Beclin-1 and LC3-II/LC3-I ratio in the DH. These results indicated that 5-HT3 receptor in the hippocampus may play a critical role in the pathogenesis of hippocampal autophagy, and is likely involved in the pathophysiology of PTSD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bachy A, Heaulme M, Giudice A, Michaud JC, Lefevre IA, Souilhac J, Manara L, Emerit MB, Gozlan H, Hamon M et al (1993) SR 57227A: a potent and selective agonist at central and peripheral 5-HT3 receptors in vitro and in vivo. Eur J Pharmacol 237(2–3):299–309

    Article  CAS  PubMed  Google Scholar 

  • Banasr M, Hery M, Printemps R, Daszuta A (2004) Serotonin-induced increases in adult cell proliferation and neurogenesis are mediated through different and common 5-HT receptor subtypes in the dentate gyrus and the subventricular zone. Neuropsychopharmacology 29(3):450–460. doi:10.1038/sj.npp.1300320

    Article  CAS  PubMed  Google Scholar 

  • Benekareddy M, Goodfellow NM, Lambe EK, Vaidya VA (2010) Enhanced function of prefrontal serotonin 5-HT(2) receptors in a rat model of psychiatric vulnerability. J Neurosci 30(36):12138–12150. doi:10.1523/JNEUROSCI.3245-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhatnagar S, Sun LM, Raber J, Maren S, Julius D, Dallman MF (2004) Changes in anxiety-related behaviors and hypothalamic-pituitary-adrenal activity in mice lacking the 5-HT-3A receptor. Physiol Behav 81(4):545–555. doi:10.1016/j.physbeh.2004.01.018

    Article  CAS  PubMed  Google Scholar 

  • Blechert J, Michael T, Vriends N, Margraf J, Wilhelm FH (2007) Fear conditioning in posttraumatic stress disorder: evidence for delayed extinction of autonomic, experiential, and behavioural responses. Behav Res Ther 45(9):2019–2033

    Article  PubMed  Google Scholar 

  • Brunello N, Davidson JR, Deahl M, Kessler RC, Mendlewicz J, Racagni G, Shalev AY, Zohar J (2001) Posttraumatic stress disorder: diagnosis and epidemiology, comorbidity and social consequences, biology and treatment. Neuropsychobiology 43(3):150–162

    Article  CAS  PubMed  Google Scholar 

  • Castilla-Ortega E, Hoyo-Becerra C, Pedraza C, Chun J, Rodriguez De Fonseca F, Estivill-Torrus G, Santin LJ (2011) Aggravation of chronic stress effects on hippocampal neurogenesis and spatial memory in LPA(1) receptor knockout mice. PLoS ONE 6(9):e25522. doi:10.1371/journal.pone.0025522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charney DS, Deutch AY, Krystal JH, Southwick SM, Davis M (1993) Psychobiologic mechanisms of posttraumatic stress disorder. Arch Gen Psychiatry 50(4):295–305

    Article  CAS  PubMed  Google Scholar 

  • Correa RJ, Valdes YR, Shepherd TG, DiMattia GE (2015) Beclin-1 expression is retained in high-grade serous ovarian cancer yet is not essential for autophagy induction in vitro. J Ovarian Res 8:52. doi:10.1186/s13048-015-0182-y

    Article  PubMed  PubMed Central  Google Scholar 

  • Costall B, Naylor RJ (1992) Anxiolytic potential of 5-HT3 receptor antagonists. Pharmacol Toxicol 70(3):157–162

    Article  CAS  PubMed  Google Scholar 

  • Davies PA, Pistis M, Hanna MC, Peters JA, Lambert JJ, Hales TG, Kirkness EF (1999) The 5-HT3B subunit is a major determinant of serotonin-receptor function. Nature 397(6717):359–363. doi:10.1038/16941

    Article  CAS  PubMed  Google Scholar 

  • Davis LL, Suris A, Lambert MT, Heimberg C, Petty F (1997) Post-traumatic stress disorder and serotonin: new directions for research and treatment. J Psychiatry Neurosci 22(5):318–326

    CAS  PubMed  PubMed Central  Google Scholar 

  • Derkach V, Surprenant A, North RA (1989) 5-HT3 receptors are membrane ion channels. Nature 339(6227):706–709. doi:10.1038/339706a0

    Article  CAS  PubMed  Google Scholar 

  • Edwards E, Hampton E, Ashby CR, Zhang J, Wang RY (1996) 5-HT3-like receptors in the rat medial prefrontal cortex: further pharmacological characterization. Brain Res 733(1):21–30

    Article  CAS  PubMed  Google Scholar 

  • Eisenberg-Lerner A, Kimchi A (2012) PKD at the crossroads of necrosis and autophagy. Autophagy 8(3):433–434. doi:10.4161/auto.19288

    Article  CAS  PubMed  Google Scholar 

  • Fakhfouri G, Mousavizadeh K, Mehr SE, Dehpour AR, Zirak MR, Ghia JE, Rahimian R (2015) From chemotherapy-induced emesis to neuroprotection: therapeutic opportunities for 5-HT3 receptor antagonists. Mol Neurobiol 52(3):1670–1679. doi:10.1007/s12035-014-8957-5

    Article  CAS  PubMed  Google Scholar 

  • Ganon-Elazar E, Akirav I (2012) Cannabinoids prevent the development of behavioral and endocrine alterations in a rat model of intense stress. Neuropsychopharmacology 37(2):456–466. doi:10.1038/npp.2011.204

    Article  CAS  PubMed  Google Scholar 

  • Goswami S, Rodriguez-Sierra O, Cascardi M, Pare D (2013) Animal models of post-traumatic stress disorder: face validity. Front Neurosci 7:89. doi:10.3389/fnins.2013.00089

    Article  PubMed  PubMed Central  Google Scholar 

  • Guthrie RM, Bryant RA (2006) Extinction learning before trauma and subsequent posttraumatic stress. Psychosom Med 68(2):307–311

    Article  PubMed  Google Scholar 

  • Hageman I, Andersen HS, Jorgensen MB (2001) Post-traumatic stress disorder: a review of psychobiology and pharmacotherapy. Acta Psychiatr Scand 104(6):411–422

    Article  CAS  PubMed  Google Scholar 

  • Harmer CJ, Reid CB, Ray MK, Goodwin GM, Cowen PJ (2006) 5HT(3) antagonism abolishes the emotion potentiated startle effect in humans. Psychopharmacology 186(1):18–24. doi:10.1007/s00213-006-0337-z

    Article  CAS  PubMed  Google Scholar 

  • Harris JA, Westbrook RF (1998) Evidence that GABA transmission mediates context-specific extinction of learned fear. Psychopharmacology 140(1):105–115

    Article  CAS  PubMed  Google Scholar 

  • Hedges DW, Allen S, Tate DF, Thatcher GW, Miller MJ, Rice SA, Cleavinger HB, Sood S, Bigler ED (2003) Reduced hippocampal volume in alcohol and substance naive Vietnam combat veterans with posttraumatic stress disorder. Cogn Behav Neurol 16(4):219–224

    Article  PubMed  Google Scholar 

  • Hoskins M, Pearce J, Bethell A, Dankova L, Barbui C, Tol WA, van Ommeren M, de Jong J, Seedat S, Chen H, Bisson JI (2015) Pharmacotherapy for post-traumatic stress disorder: systematic review and meta-analysis. Br J Psychiatry 206(2):93–100. doi:10.1192/bjp.bp.114.148551

    Article  PubMed  Google Scholar 

  • Howlett JR, Stein MB (2015) Prevention of trauma and stressor-related disorders: a review. Neuropsychopharmacology. doi:10.1038/npp.2015.261

    PubMed  PubMed Central  Google Scholar 

  • Ipser J, Seedat S, Stein DJ (2006) Serotonergic vulnerability and depression: assumptions, experimental evidence and implications. S Afr Med J 96(10):1088–1096

    CAS  PubMed  Google Scholar 

  • Jaggi M, Du C, Zhang W, Balaji KC (2007) Protein kinase D1: a protein of emerging translational interest. Front Biosci 12:3757–3767

    Article  CAS  PubMed  Google Scholar 

  • Jans LA, Riedel WJ, Markus CR, Blokland A (2007) Serotonergic vulnerability and depression: assumptions, experimental evidence and implications. Mol Psychiatry 12(6):522–543

    Article  CAS  PubMed  Google Scholar 

  • Katsurabayashi S, Kubota H, Tokutomi N, Akaike N (2003) A distinct distribution of functional presynaptic 5-HT receptor subtypes on GABAergic nerve terminals projecting to single hippocampal CA1 pyramidal neurons. Neuropharmacology 44(8):1022–1030

    Article  CAS  PubMed  Google Scholar 

  • Kawa K (1994) Distribution and functional properties of 5-HT3 receptors in the rat hippocampal dentate gyrus: a patch-clamp study. J Neurophysiol 71(5):1935–1947

    CAS  PubMed  Google Scholar 

  • Keller SM, Schreiber WB, Staib JM, Knox D (2015) Sex differences in the single prolonged stress model. Behav Brain Res 286:29–32. doi:10.1016/j.bbr.2015.02.034

    Article  PubMed  Google Scholar 

  • Kelley SP, Bratt AM, Hodge CW (2003) Targeted gene deletion of the 5-HT3A receptor subunit produces an anxiolytic phenotype in mice. Eur J Pharmacol 461(1):19–25

    Article  CAS  PubMed  Google Scholar 

  • Kitayama N, Vaccarino V, Kutner M, Weiss P, Bremner JD (2005) Magnetic resonance imaging (MRI) measurement of hippocampal volume in posttraumatic stress disorder: a meta-analysis. J Affect Disord 88(1):79–86

    Article  PubMed  Google Scholar 

  • Klemenhagen KC, Gordon JA, David DJ, Hen R, Gross CT (2006) Increased fear response to contextual cues in mice lacking the 5-HT1A receptor. Neuropsychopharmacology 31(1):101–111

    CAS  PubMed  Google Scholar 

  • Knox D, Perrine SA, George SA, Galloway MP, Liberzon I (2010) Single prolonged stress decreases glutamate, glutamine, and creatine concentrations in the rat medial prefrontal cortex. Neurosci Lett 480(1):16–20. doi:10.1016/j.neulet.2010.05.052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kohler S, Cierpinsky K, Kronenberg G, Adli M (2015) The serotonergic system in the neurobiology of depression: relevance for novel antidepressants. J Psychopharmacol 30:13–22

    Article  PubMed  Google Scholar 

  • Koike M, Shibata M, Tadakoshi M, Gotoh K, Komatsu M, Waguri S, Kawahara N, Kuida K, Nagata S, Kominami E, Tanaka K, Uchiyama Y (2008) Inhibition of autophagy prevents hippocampal pyramidal neuron death after hypoxic-ischemic injury. Am J Pathol 172(2):454–469. doi:10.2353/ajpath.2008.070876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kondo M, Nakamura Y, Ishida Y, Yamada T, Shimada S (2014) The 5-HT3A receptor is essential for fear extinction. Learn Mem 21(1):1–4. doi:10.1101/lm.032193.113

    CAS  PubMed Central  Google Scholar 

  • Koyama S, Matsumoto N, Kubo C, Akaike N (2000) Presynaptic 5-HT3 receptor-mediated modulation of synaptic GABA release in the mechanically dissociated rat amygdala neurons. J Physiol 529(Pt 2):373–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kusserow H, Davies B, Hortnagl H, Voigt I, Stroh T, Bert B, Deng DR, Fink H, Veh RW, Theuring F (2004) Reduced anxiety-related behaviour in transgenic mice overexpressing serotonin 1A receptors. Brain Res Mol Brain Res 129(1–2):104–116

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Hjerling-Leffler J, Zagha E, Fishell G, Rudy B (2010) The largest group of superficial neocortical GABAergic interneurons expresses ionotropic serotonin receptors. J Neurosci 30(50):16796–16808. doi:10.1523/JNEUROSCI.1869-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindauer RJ, Vlieger EJ, Jalink M, Olff M, Carlier IV, Majoie CB, Den Heeten GJ, Gersons BP (2005) Effects of psychotherapy on hippocampal volume in out-patients with post-traumatic stress disorder: a MRI investigation. Psychol Med 35(10):1421–1431

    Article  PubMed  Google Scholar 

  • Liu L, Li CJ, Lu Y, Zong XG, Luo C, Sun J, Guo LJ (2015) Baclofen mediates neuroprotection on hippocampal CA1 pyramidal cells through the regulation of autophagy under chronic cerebral hypoperfusion. Sci Rep 5:14474. doi:10.1038/srep14474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makkar SR, Zhang SQ, Cranney J (2010) Behavioral and neural analysis of GABA in the acquisition, consolidation, reconsolidation, and extinction of fear memory. Neuropsychopharmacology 35(8):1625–1652. doi:10.1038/npp.2010.53

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maren S (2011) Seeking a spotless mind: extinction, deconsolidation, and erasure of fear memory. Neuron 70(5):830–845. doi:10.1016/j.neuron.2011.04.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maricq AV, Peterson AS, Brake AJ, Myers RM, Julius D (1991) Primary structure and functional expression of the 5HT3 receptor, a serotonin-gated ion channel. Science 254(5030):432–437

    Article  CAS  PubMed  Google Scholar 

  • McMahon LL, Kauer JA (1997) Hippocampal interneurons are excited via serotonin-gated ion channels. J Neurophysiol 78(5):2493–2502

    CAS  PubMed  Google Scholar 

  • Meneses A (2013) 5-HT systems: emergent targets for memory formation and memory alterations. Rev Neurosci 24(6):629–664. doi:10.1515/revneuro-2013-0026

    Article  CAS  PubMed  Google Scholar 

  • Meneses A (2015) Serotonin, neural markers, and memory. Front Pharmacol 6:143. doi:10.3389/fphar.2015.00143

    Article  PubMed  PubMed Central  Google Scholar 

  • Michopoulos V, Norrholm SD, Jovanovic T (2015) Diagnostic biomarkers for posttraumatic stress disorder: promising horizons from translational neuroscience research. Biol Psychiatry 78(5):344–353. doi:10.1016/j.biopsych.2015.01.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morales M, Bloom FE (1997) The 5-HT3 receptor is present in different subpopulations of GABAergic neurons in the rat telencephalon. J Neurosci 17(9):3157–3167

    CAS  PubMed  Google Scholar 

  • Morales M, Battenberg E, de Lecea L, Sanna PP, Bloom FE (1996) Cellular and subcellular immunolocalization of the type 3 serotonin receptor in the rat central nervous system. Brain Res Mol Brain Res 36(2):251–260

    Article  CAS  PubMed  Google Scholar 

  • Moreau K, Ravikumar B, Renna M, Puri C, Rubinsztein DC (2011) Autophagosome precursor maturation requires homotypic fusion. Cell 146(2):303–317. doi:10.1016/j.cell.2011.06.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murrough JW, Czermak C, Henry S, Nabulsi N, Gallezot JD, Gueorguieva R, Planeta-Wilson B, Krystal JH, Neumaier JF, Huang Y, Ding YS, Carson RE, Neumeister A (2011) The effect of early trauma exposure on serotonin type 1B receptor expression revealed by reduced selective radioligand binding. Arch Gen Psychiatry 68(9):892–900. doi:10.1001/archgenpsychiatry.2011.91

    Article  PubMed  PubMed Central  Google Scholar 

  • Myers KM, Davis M (2007) Mechanisms of fear extinction. Mol Psychiatry 12(2):120–150

    Article  CAS  PubMed  Google Scholar 

  • Naghdi N, Harooni HE (2005) The effect of intrahippocampal injections of ritanserin (5HT2A/2C antagonist) and granisetron (5HT3 antagonist) on learning as assessed in the spatial version of the water maze. Behav Brain Res 157(2):205–210

    Article  CAS  PubMed  Google Scholar 

  • Nguyen H, Wang H, le T, Ho W, Sharkey KA, Swain MG (2008) Downregulated hypothalamic 5-HT3 receptor expression and enhanced 5-HT3 receptor antagonist-mediated improvement in fatigue-like behaviour in cholestatic rats. Neurogastroenterol Motil 20(3):228–235

    Article  CAS  PubMed  Google Scholar 

  • Nikoletopoulou V, Papandreou ME, Tavernarakis N (2015) Autophagy in the physiology and pathology of the central nervous system. Cell Death Differ 22(3):398–407. doi:10.1038/cdd.2014.204

    Article  CAS  PubMed  Google Scholar 

  • Nixon RA, Yang DS (2012) Autophagy and neuronal cell death in neurological disorders. Cold Spring Harb Perspect Biol 4(10):a008839. doi:10.1101/cshperspect.a008839

    Article  PubMed  PubMed Central  Google Scholar 

  • Orsini CA, Maren S (2012) Neural and cellular mechanisms of fear and extinction memory formation. Neurosci Biobehav Rev 36(7):1773–1802. doi:10.1016/j.neubiorev.2011.12.014

    Article  PubMed  PubMed Central  Google Scholar 

  • Parsons RG, Ressler KJ (2013) Implications of memory modulation for post-traumatic stress and fear disorders. Nat Neurosci 16(2):146–153. doi:10.1038/nn.3296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pham K, Nacher J, Hof PR, McEwen BS (2003) Repeated restraint stress suppresses neurogenesis and induces biphasic PSA-NCAM expression in the adult rat dentate gyrus. Eur J Neurosci 17(4):879–886

    Article  PubMed  Google Scholar 

  • Pietrzak RH, Henry S, Southwick SM, Krystal JH, Neumeister A (2013) Linking in vivo brain serotonin type 1B receptor density to phenotypic heterogeneity of posttraumatic stress symptomatology. Mol Psychiatry 18(4):399–401. doi:10.1038/mp.2012.60

    Article  CAS  PubMed  Google Scholar 

  • Pitsikas N, Brambilla A, Borsini F (1994) Effect of DAU 6215, a novel 5-HT3 receptor antagonist, on scopolamine-induced amnesia in the rat in a spatial learning task. Pharmacol Biochem Behav 47(1):95–99

    Article  CAS  PubMed  Google Scholar 

  • Price LH, Malison RT, McDougle CJ, McCance-Katz EF, Owen KR, Heninger GR (1997) Neurobiology of tryptophan depletion in depression: effects of m-chlorophenylpiperazine (mCPP). Neuropsychopharmacology 17(5):342–350

    Article  CAS  PubMed  Google Scholar 

  • Puig MV, Santana N, Celada P, Mengod G, Artigas F (2004) In vivo excitation of GABA interneurons in the medial prefrontal cortex through 5-HT3 receptors. Cereb Cortex 14(12):1365–1375. doi:10.1093/cercor/bhh097

    Article  PubMed  Google Scholar 

  • Romao S, Munz C (2014) LC3-associated phagocytosis. Autophagy 10(3):526–528. doi:10.4161/auto.27606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ropert N, Guy N (1991) Serotonin facilitates GABAergic transmission in the CA1 region of rat hippocampus in vitro. J Physiol 441:121–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shalev AY (2001) What is posttraumatic stress disorder? J Clin Psychiatry 62(Suppl 17):4–10

    PubMed  Google Scholar 

  • Shi CS, Kehrl JH (2008) MyD88 and Trif target Beclin 1 to trigger autophagy in macrophages. J Biol Chem 283(48):33175–33182. doi:10.1074/jbc.M804478200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smit-Rigter LA, Wadman WJ, van Hooft JA (2010) Impaired social behavior in 5-HT(3A) receptor knockout mice. Front Behav Neurosci 4:169. doi:10.3389/fnbeh.2010.00169

    Article  PubMed  PubMed Central  Google Scholar 

  • Southwick SM, Krystal JH, Bremner JD, Morgan CA 3rd, Nicolaou AL, Nagy LM, Johnson DR, Heninger GR, Charney DS (1997) Noradrenergic and serotonergic function in posttraumatic stress disorder. Arch Gen Psychiatry 54(8):749–758

    Article  CAS  PubMed  Google Scholar 

  • Staubli U, Xu FB (1995) Effects of 5-HT3 receptor antagonism on hippocampal theta rhythm, memory, and LTP induction in the freely moving rat. J Neurosci 15(3 Pt 2):2445–2452

    CAS  PubMed  Google Scholar 

  • Tecott LH, Maricq AV, Julius D (1993) Nervous system distribution of the serotonin 5-HT3 receptor mRNA. Proc Natl Acad Sci U S A 90(4):1430–1434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tronson NC, Schrick C, Fischer A, Sananbenesi F, Pages G, Pouyssegur J, Radulovic J (2008) Regulatory mechanisms of fear extinction and depression-like behavior. Neuropsychopharmacology 33(7):1570–1583

    Article  CAS  PubMed  Google Scholar 

  • Turner TJ, Mokler DJ, Luebke JI (2004) Calcium influx through presynaptic 5-HT3 receptors facilitates GABA release in the hippocampus: in vitro slice and synaptosome studies. Neuroscience 129(3):703–718

    Article  CAS  PubMed  Google Scholar 

  • Villarreal G, Petropoulos H, Hamilton DA, Rowland LM, Horan WP, Griego JA, Moreshead M, Hart BL, Brooks WM (2002) Proton magnetic resonance spectroscopy of the hippocampus and occipital white matter in PTSD: preliminary results. Can J Psychiatry 47(7):666–670

    PubMed  Google Scholar 

  • Watanabe Y, Sakai RR, McEwen BS, Mendelson S (1993) Stress and antidepressant effects on hippocampal and cortical 5-HT1A and 5-HT2 receptors and transport sites for serotonin. Brain Res 615(1):87–94

    Article  CAS  PubMed  Google Scholar 

  • Wignall EL, Dickson JM, Vaughan P, Farrow TF, Wilkinson ID, Hunter MD, Woodruff PW (2004) Smaller hippocampal volume in patients with recent-onset posttraumatic stress disorder. Biol Psychiatry 56(11):832–836

    Article  PubMed  Google Scholar 

  • Wu HJ, Pu JL, Krafft PR, Zhang JM, Chen S (2015) The molecular mechanisms between autophagy and apoptosis: potential role in central nervous system disorders. Cell Mol Neurobiol 35(1):85–99. doi:10.1007/s10571-014-0116-z

    Article  CAS  PubMed  Google Scholar 

  • Wu ZM, Zheng CH, Zhu ZH, Wu FT, Ni GL, Liang Y (2016) SiRNA-mediated serotonin transporter knockdown in the dorsal raphe nucleus rescues single prolonged stress-induced hippocampal autophagy in rats. J Neurol Sci 360:133–140. doi:10.1016/j.jns.2015.11.056

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto S, Morinobu S, Takei S, Fuchikami M, Matsuki A, Yamawaki S, Liberzon I (2009) Single prolonged stress: toward an animal model of posttraumatic stress disorder. Depress Anxiety 26(12):1110–1117. doi:10.1002/da.20629

    Article  PubMed  Google Scholar 

  • Yang J, Takahashi Y, Cheng E, Liu J, Terranova PF, Zhao B, Thrasher JB, Wang HG, Li B (2010) GSK-3beta promotes cell survival by modulating Bif-1-dependent autophagy and cell death. J Cell Sci 123(Pt 6):861–870. doi:10.1242/jcs.060475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Professor Marong Fang for his valuable suggestions on this paper.

Funding

This work was supported by Zhejiang Provincial Science and Technology Department of Public Welfare Technology Application Project (2014C37026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Liang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, ZM., Yang, LH., Cui, R. et al. Contribution of Hippocampal 5-HT3 Receptors in Hippocampal Autophagy and Extinction of Conditioned Fear Responses after a Single Prolonged Stress Exposure in Rats. Cell Mol Neurobiol 37, 595–606 (2017). https://doi.org/10.1007/s10571-016-0395-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-016-0395-7

Keywords

Navigation