Skip to main content

Advertisement

Log in

Minocycline Promotes Neurite Outgrowth of PC12 Cells Exposed to Oxygen-Glucose Deprivation and Reoxygenation Through Regulation of MLCP/MLC Signaling Pathways

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Minocycline, a semi-synthetic second-generation derivative of tetracycline, has been reported to exert neuroprotective effects both in animal models and in clinic trials of neurological diseases. In the present study, we first investigated the protective effects of minocycline on oxygen-glucose deprivation and reoxygenation-induced impairment of neurite outgrowth and its potential mechanism in the neuronal cell line, PC12 cells. We found that minocycline significantly increased cell viability, promoted neurite outgrowth and enhanced the expression of growth-associated protein-43 (GAP-43) in PC12 cells exposed to oxygen-glucose deprivation/reoxygenation injury. In addition, immunoblots revealed that minocycline reversed the overexpression of phosphorylated myosin light chain (MLC) and the suppression of activated extracellular signal-regulated kinase 1/2 (ERK1/2) caused by oxygen-glucose deprivation/reoxygenation injury. Moreover, the minocycline-induced neurite outgrowth was significantly blocked by Calyculin A (1 nM), an inhibitor of myosin light chain phosphatase (MLCP), but not by an ERK1/2 inhibitor (U0126; 10 μM). These findings suggested that minocycline activated the MLCP/MLC signaling pathway in PC12 cells after oxygen-glucose deprivation/reoxygenation injury, which resulted in the promotion of neurite outgrowth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alabed YZ, Grados-Munro E, Ferraro GB, Hsieh SH, Fournier AE (2006) Neuronal responses to myelin are mediated by rho kinase. J Neurochem 96(6):1616–1625

    Article  CAS  PubMed  Google Scholar 

  • Antonenko YN, Rokitskaya TI, Cooper AJ, Krasnikov BF (2010) Minocycline chelates Ca2+, binds to membranes, and depolarizes mitochondria by formation of Ca2+-dependent ion channels. J Bioenerg Biomembr 42(2):151–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atwal JK, Pinkston-Gosse J, Syken J, Stawicki S, Wu Y, Shatz C, Tessier-Lavigne M (2008) PirB is a functional receptor for myelin inhibitors of axonal regeneration. Science 322(5903):967–970

    Article  CAS  PubMed  Google Scholar 

  • Cafferty WB, McGee AW, Strittmatter SM (2008) Axonal growth therapeutics: regeneration or sprouting or plasticity? Trends Neurosci 31(5):215–220. doi:10.1016/j.tins.2008.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen MS, Huber AB, van der Haar ME, Frank M, Schnell L, Spillmann AA, Christ F, Schwab ME (2000) Nogo-A is a myelin-associated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN-1. Nature 403(6768):434–439

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Chen S, Jiang Y, Zhu C, Wu A, Ma X, Peng F, Ma L, Zhu D, Wang Q, Pi R (2013) Minocycline reduces oxygen-glucose deprivation-induced PC12 cell cytotoxicity via matrix metalloproteinase-9, integrin beta1 and phosphorylated Akt modulation. Neurol Sci 34(8):1391–1396

    Article  PubMed  Google Scholar 

  • Choi DH, Lee KH, Kim JH, Kim MY, Lim JH, Lee J (2012) Effect of 710 nm visible light irradiation on neurite outgrowth in primary rat cortical neurons following ischemic insult. Biochem Biophys Res Commun 422(2):274–279

    Article  CAS  PubMed  Google Scholar 

  • Das KP, Freudenrich TM, Mundy WR (2004) Assessment of PC12 cell differentiation and neurite growth: a comparison of morphological and neurochemical measures. Neurotoxicol Teratol 26(3):397–406

    Article  CAS  PubMed  Google Scholar 

  • El Omri A, Han J, Kawada K, Ben Abdrabbah M, Isoda H (2012) Luteolin enhances cholinergic activities in PC12 cells through ERK1/2 and PI3 K/Akt pathways. Brain Res 1437:16–25

    Article  PubMed  Google Scholar 

  • Endo M, Yamashita T (2009) Inactivation of Ras by p120GAP via focal adhesion kinase dephosphorylation mediates RGMa-induced growth cone collapse. J Neurosci 29(20):6649–6662

    Article  CAS  PubMed  Google Scholar 

  • Fabian L, Troscianczuk J, Forer A (2007) Calyculin A, an enhancer of myosin, speeds up anaphase chromosome movement. Cell Chromosome 6:1

    Article  PubMed  PubMed Central  Google Scholar 

  • Fagan SC, Cronic LE, Hess DC (2011) Minocycline development for acute ischemic stroke. Transl Stroke Res 2(2):202–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan X, Lo EH, Wang X (2013) Effects of minocycline plus tissue plasminogen activator combination therapy after focal embolic stroke in type 1 diabetic rats. Stroke 44(3):745–752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fournier AE, GrandPre T, Strittmatter SM (2001) Identification of a receptor mediating Nogo-66 inhibition of axonal regeneration. Nature 409(6818):341–346

    Article  CAS  PubMed  Google Scholar 

  • Fujita A, Hattori Y, Takeuchi T, Kamata Y, Hata F (2001) NGF induces neurite outgrowth via a decrease in phosphorylation of myosin light chain in PC12 cells. NeuroReport 12(16):3599–3602

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Martinez EM, Sanz-Blasco S, Karachitos A, Bandez MJ, Fernandez-Gomez FJ, Perez-Alvarez S, de Mera RM, Jordan MJ, Aguirre N, Galindo MF, Villalobos C, Navarro A, Kmita H, Jordan J (2010) Mitochondria and calcium flux as targets of neuroprotection caused by minocycline in cerebellar granule cells. Biochem Pharmacol 79(2):239–250

    Article  CAS  PubMed  Google Scholar 

  • Gonzenbach RR, Schwab ME (2008) Disinhibition of neurite growth to repair the injured adult CNS: focusing on Nogo. Cell Mol Life Sci CMLS 65(1):161–176

    Article  CAS  PubMed  Google Scholar 

  • GrandPre T, Nakamura F, Vartanian T, Strittmatter SM (2000) Identification of the Nogo inhibitor of axon regeneration as a Reticulon protein. Nature 403(6768):439–444

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto K, Ishima T (2010) A novel target of action of minocycline in NGF-induced neurite outgrowth in PC12 cells: translation initiation [corrected] factor eIF4AI. PLoS ONE 5(11):e15430

    Article  PubMed  PubMed Central  Google Scholar 

  • Heasman SJ, Ridley AJ (2008) Mammalian Rho GTPases: new insights into their functions from in vivo studies. Nat Rev Mol Cell Biol 9(9):690–701

    Article  CAS  PubMed  Google Scholar 

  • Inutsuka A, Goda M, Fujiyoshi Y (2009) Calyculin A-induced neurite retraction is critically dependent on actomyosin activation but not on polymerization state of microtubules. Biochem Biophys Res Commun 390(4):1160–1166

    Article  CAS  PubMed  Google Scholar 

  • Kelly-Hayes M, Beiser A, Kase CS, Scaramucci A, D’Agostino RB, Wolf PA (2003) The influence of gender and age on disability following ischemic stroke: the Framingham study. J Stroke Cerebrovas Dis 12(3):119–126

    Article  Google Scholar 

  • Kikuchi K, Kawahara K, Biswas KK, Ito T, Tancharoen S, Morimoto Y, Matsuda F, Oyama Y, Takenouchi K, Miura N, Arimura N, Nawa Y, Meng X, Shrestha B, Arimura S, Iwata M, Mera K, Sameshima H, Ohno Y, Maenosono R, Yoshida Y, Tajima Y, Uchikado H, Kuramoto T, Nakayama K, Shigemori M, Hashiguchi T, Maruyama I (2009) Minocycline attenuates both OGD-induced HMGB1 release and HMGB1-induced cell death in ischemic neuronal injury in PC12 cells. Biochem Biophys Res Commun 385(2):132–136

    Article  CAS  PubMed  Google Scholar 

  • Kim HS, Suh YH (2009) Minocycline and neurodegenerative diseases. Behav Brain Res 196(2):168–179

    Article  CAS  PubMed  Google Scholar 

  • Kitayama M, Ueno M, Itakura T, Yamashita T (2011) Activated microglia inhibit axonal growth through RGMa. PLoS ONE 6(9):e25234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kubo T, Endo M, Hata K, Taniguchi J, Kitajo K, Tomura S, Yamaguchi A, Mueller BK, Yamashita T (2008) Myosin IIA is required for neurite outgrowth inhibition produced by repulsive guidance molecule. J Neurochem 105(1):113–126

    Article  CAS  PubMed  Google Scholar 

  • Lampl Y, Boaz M, Gilad R, Lorberboym M, Dabby R, Rapoport A, Anca-Hershkowitz M, Sadeh M (2007) Minocycline treatment in acute stroke: an open-label, evaluator-blinded study. Neurology 69(14):1404–1410

    Article  CAS  PubMed  Google Scholar 

  • McKerracher L, David S, Jackson DL, Kottis V, Dunn RJ, Braun PE (1994) Identification of myelin-associated glycoprotein as a major myelin-derived inhibitor of neurite growth. Neuron 13(4):805–811

    Article  CAS  PubMed  Google Scholar 

  • Nagahara Y, Suzuki E, Sekine Y, Uchiro H, Yoshimi Y, Shinomiya T, Ikekita M (2012) SUTAF, a novel beta-methoxyacrylate derivative, promotes neurite outgrowth with extracellular signal-regulated kinase and c-jun N-terminal kinase activation. Eur J Pharmacol 694(1–3):53–59

    Article  CAS  PubMed  Google Scholar 

  • Plane JM, Shen Y, Pleasure DE, Deng W (2010) Prospects for minocycline neuroprotection. Arch Neurol 67(12):1442–1448

    Article  PubMed  PubMed Central  Google Scholar 

  • Reber BF, Bouron A (1995) Calyculin-A-induced fast neurite retraction in nerve growth factor-differentiated rat pheochromocytoma (PC12) cells. Neurosci Lett 183(3):198–201

    Article  CAS  PubMed  Google Scholar 

  • Singh G, Siddiqui MA, Khanna VK, Kashyap MP, Yadav S, Gupta YK, Pant KK, Pant AB (2009) Oxygen glucose deprivation model of cerebral stroke in PC-12 cells: glucose as a limiting factor. Toxicol Mech Methods 19(2):154–160

    Article  CAS  PubMed  Google Scholar 

  • Song Y, Wei EQ, Zhang WP, Zhang L, Liu JR, Chen Z (2004) Minocycline protects PC12 cells from ischemic-like injury and inhibits 5-lipoxygenase activation. NeuroReport 15(14):2181–2184

    Article  CAS  PubMed  Google Scholar 

  • Stirling DP, Koochesfahani KM, Steeves JD, Tetzlaff W (2005) Minocycline as a neuroprotective agent. Neuroscientist 11(4):308–322

    Article  CAS  PubMed  Google Scholar 

  • Suter DM, Forscher P (2000) Substrate-cytoskeletal coupling as a mechanism for the regulation of growth cone motility and guidance. J Neurobiol 44(2):97–113

    Article  CAS  PubMed  Google Scholar 

  • Tan HB, Zhong YS, Cheng Y, Shen X (2011) Rho/ROCK pathway and neural regeneration: a potential therapeutic target for central nervous system and optic nerve damage. Int J Ophthalmol 4(6):652–657

    PubMed  PubMed Central  Google Scholar 

  • Tao T, Xu G, SiChen C, Feng J, Kong Y, Qin X (2013) Minocycline promotes axonal regeneration through suppression of RGMa in rat MCAO/reperfusion model. Synapse 67(4):189–198

    Article  CAS  PubMed  Google Scholar 

  • Walsh MP, Cole WC (2013) The role of actin filament dynamics in the myogenic response of cerebral resistance arteries. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab 33(1):1–12

    Article  CAS  Google Scholar 

  • Wang KC, Koprivica V, Kim JA, Sivasankaran R, Guo Y, Neve RL, He Z (2002) Oligodendrocyte-myelin glycoprotein is a Nogo receptor ligand that inhibits neurite outgrowth. Nature 417(6892):941–944

    Article  CAS  PubMed  Google Scholar 

  • Wang YH, Wang DW, Wu N, Wang Y, Yin ZQ (2012) Alpha-crystallin promotes rat axonal regeneration through regulation of RhoA/rock/cofilin/MLC signaling pathways. J Mol Neurosci MN 46(1):138–144

    Article  CAS  PubMed  Google Scholar 

  • Yong VW, Wells J, Giuliani F, Casha S, Power C, Metz LM (2004) The promise of minocycline in neurology. Lancet Neurol 3(12):744–751

    Article  PubMed  Google Scholar 

  • Zhou Y, Besner GE (2010) Heparin-binding epidermal growth factor-like growth factor is a potent neurotrophic factor for PC12 cells. Neuro-Signals 18(3):141–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

These studies were supported by the National Natural Science Foundation of China (Nos: 30770762, 30970987) to Dr. Xin-Yue Qin, a grant from the Health Department of Sichuan Province (No: 140032), and from the Doctoral Fund of affiliated hospital of Luzhou Medical College (No: 2014046) to Dr. Tao Tao.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-yue Qin.

Ethics declarations

Conflict of interest

The authors declare there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, T., Feng, Jz., Xu, Gh. et al. Minocycline Promotes Neurite Outgrowth of PC12 Cells Exposed to Oxygen-Glucose Deprivation and Reoxygenation Through Regulation of MLCP/MLC Signaling Pathways. Cell Mol Neurobiol 37, 417–426 (2017). https://doi.org/10.1007/s10571-016-0374-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-016-0374-z

Keywords

Navigation