Skip to main content
Log in

α2-Adrenergic Impact on Hypothalamic Magnocellular Oxytocinergic Neurons in Long Evans and Brattleboro Rats: Effects of Agonist and Antagonists

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

We have previously demonstrated that α2-adrenoceptors regulate hypothalamic magnocellular oxytocinergic (OXY) neurons in Sprague Dawley rats. Here we investigated whether activation/inhibition of α2-adrenoceptors may similarly trigger/downregulate the activity of OXY neurons in control Long Evans (+/+) and permanently osmotically stressed Brattleboro (di/di) rats. The effect of α2-adrenoceptor agonist, xylazine (XYL) and α2-adrenoceptor antagonists, atipamezole (ATIP), and idazoxan (IDX) were evaluated in the supraoptic (SON) and paraventricular (PVN) hypothalamic nuclei. Saline (SAL, 0.1 ml/100 g), XYL (10 mg/kg), ATIP, (1 mg/kg), and IDX (10 mg/kg) and IDX or ATIP followed by XYL were applied intraperitoneally. Rats were sacrificed 90 min later and Fos/OXY co-labelings analyzed in microscope. In control +/+ rats no or few Fos/OXY co-labelings occurred in SON and PVN. XYL significantly increased Fos incidence in OXY neurons in both nuclei. ATIP significantly suppressed the effect of XYL in both nuclei and IDX only in SON. In di/di controls 81% of OXY neurons in SON and 44% in PVN revealed Fos presence and XYL did not further elevate Fos number in SON OXY neurons and slightly increased Fos number in PVN. ATIP or IDX only partially reduced Fos in SAL or XYL treated di/di rats. Our data indicate that: (1) XYL stimulation is not effective in di/di rats because of sustained upregulation of OXY neurons activity and (2) neither ATIP nor IDX reduced significantly the OXY activity in control di/di rats. These findings suggest that α2-adrenoceptors have only a limited impact in maintaining OXY cells activity upregulation in PVN and SON of di/di rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aoki C, Go CG, Venkatesan C, Kurose H (1994) Perikaryal and synaptic localization of alpha 2A-adrenergic receptor-like immunoreactivity. Brain Res 650:181–204. doi:10.1016/0006-8993(94)91782-5

    Article  PubMed  CAS  Google Scholar 

  • Armstrong WE, Gallagher MJ, Sladek CD (1986) Noradrenergic stimulation of supraoptic neuronal activity and vasopressin release in vitro: mediation by an alpha1-receptor. Brain Res 365:192–197. doi:10.1016/0006-8993(86)90739-0

    Article  PubMed  CAS  Google Scholar 

  • Aulsebrook LH, Holland RC (1969) Central regulation of oxytocin release with and without vasopressin release. Am J Physiol 216:818–829

    PubMed  CAS  Google Scholar 

  • Bealer SL, Crowley WR (1998) Noradrenergic control of central oxytocin release during lactation in rats. Am J Physiol 274:E453–E458

    PubMed  CAS  Google Scholar 

  • Bing G, Stone EA, Zhang Y, Filer D (1992) Immunohistochemical studies of noradrenergic-induced expression of c-fos in the rat CNS. Brain Res 592(1–2):57–62. doi:10.1016/0006-8993(92)91658-2

    Article  PubMed  CAS  Google Scholar 

  • Bousquet P, Bruban V, Schann S, Greney H, Ehrhardt JD, Dontenwill M, Feldman J (1999) Participation of imidazoline receptors and alpha(2-)-adrenoceptors in the central hypotensive effects of imidazoline-like drugs. Ann N Y Acad Sci 881:272–278. doi:10.1111/j.1749-6632.1999.tb09369.x

    Article  PubMed  CAS  Google Scholar 

  • Brimble MJ, Balment RJ, Smith CP, Windle RJ, Forsling ML (1991) Influence of oxytocin on sodium excretion in the anaesthetized Brattleboro rat. J Endocrinol 129:49–54. doi:10.1677/joe.0.1290049

    Article  PubMed  CAS  Google Scholar 

  • Bruhn TO, Sutton SW, Plotsky PM, Vale WW (1986) Central administration of corticotropin-releasing factor modulates oxytocin secretion in the rat. Endocrinology 119:1558–1563

    Article  PubMed  CAS  Google Scholar 

  • Bundzikova J, Pirnik Z, Mikkelsen JD, Zelena D, Kiss A (2008a) Activity variations in the hypothalamic oxytocinergic neurons under stimulation of alpha-2 adrenoceptors in osmotically stressed Brattleboro rats. Ann N Y Acad Sci 1148:154–160

    Article  PubMed  CAS  Google Scholar 

  • Bundzikova J, Pirnik Z, Zelena D, Mikkelsen JD, Kiss A (2008b) Response of substances co-expressed in hypothalamic magnocellular neurons to osmotic challenges in normal and Brattleboro rats. Cell Mol Neurobiol 28:1033–1047. doi:10.1007/s10571-008-9306-x

    Article  PubMed  CAS  Google Scholar 

  • Cabral AD, Kapusta DR, Kenigs VA, Varner KJ (1998) Central alpha2-receptor mechanisms contribute to enhanced renal responses during ketamine–xylazine anesthesia. Am J Physiol 275:R1867–R1874

    PubMed  CAS  Google Scholar 

  • Clarke RW, Harris J (2002) RX 821002 as a tool for physiological investigation of alpha(2)-adrenoceptors. CNS Drug Rev 8:177–192

    PubMed  CAS  Google Scholar 

  • Crowley WR, Armstrong WE (1992) Neurochemical regulation of oxytocin secretion in lactation. Endocr Rev 13:33–65

    PubMed  CAS  Google Scholar 

  • Cummings S, Elde R, Ells J, Lindall A (1983) Corticotropin-releasing factor immunoreactivity is widely distributed within the central nervous system of the rat: an immunohistochemical study. J Neurosci 3:1355–1368

    PubMed  CAS  Google Scholar 

  • Dabire H, Dausse JP, Mouille P, Fournier B, Cardot A, Meyer P, Schmitt H (1986) Pharmacological properties of the enantiomers of idazoxan: possible separation between their alpha-adrenoceptor blocking effects. Clin Exp Hypertens 8:387–409. doi:10.3109/10641968609039612

    Article  CAS  Google Scholar 

  • Dematteis A, Rossi L, Canavese G, Menzano A, Meneguz PG (2008) Immobilising free-ranging Alpine chamois with xylazine, reversed with atipamezole. Vet Rec 163:184–189

    PubMed  CAS  Google Scholar 

  • Doherty TJ, Ballinger JA, McDonell WN, Pascoe PJ, Valliant AE (1987) Antagonism of xylazine induced sedation by idazoxan in calves. Can J Vet Res 51:244–248

    PubMed  CAS  Google Scholar 

  • Engberg G, Eriksson E (1991) Effects of alpha 2-adrenoceptor agonists on locus coeruleus firing rate and brain noradrenaline turnover in N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ)-treated rats. Naunyn Schmiedebergs Arch Pharmacol 343:472–477. doi:10.1007/BF00169548

    Article  PubMed  CAS  Google Scholar 

  • Feuvrier E, Aubert M, Mausset AL, Alonso G, Gaillet S, Malaval F, Szafarczyk A (1998) Glucocorticoids provoke a shift from alpha2- to alpha1-adrenoreceptor activities in cultured hypothalamic slices leading to opposite noradrenaline effect on corticotropin-releasing hormone release. J Neurochem 70:1199–1209

    Article  PubMed  CAS  Google Scholar 

  • Giovannelli L, Shiromani PJ, Jirikowski GF, Bloom FE (1992) Expression of c-fos protein by immunohistochemically identified oxytocin neurons in the rat hypothalamus upon osmotic stimulation. Brain Res 588:41–48. doi:10.1016/0006-8993(92)91342-C

    Article  PubMed  CAS  Google Scholar 

  • Hatton GI, Hutton UE, Hoblitzell ER, Armstrong WE (1976) Morphological evidence for two populations of magnocellular elements in the rat paraventricular nucleus. Brain Res 108:187–193. doi:10.1016/0006-8993(76)90176-1

    Article  PubMed  CAS  Google Scholar 

  • Haviernick M, Côté SD, Festa-Bianchet M (1998) Immobilization of mountain goats with xylazine and reversal with idazoxan. J Wildl Dis 34:342–347

    PubMed  CAS  Google Scholar 

  • Kapoor JR, Sladek CD (2000) Purinergic and adrenergic agonists synergize in stimulating vasopressin and oxytocin release. J Neurosci 20:8868–8875

    PubMed  CAS  Google Scholar 

  • Kapoor JR, Sladek CD (2001) Substance P and NPY differentially potentiate ATP and adrenergic stimulated vasopressin and oxytocin release. Am J Physiol Regul Integr Comp Physiol 280:R69–R78

    PubMed  CAS  Google Scholar 

  • Karhuvaara S, Kallio A, Scheinin M, Anttila M, Salonen JS, Scheinin H (1990) Pharmacological effects and pharmacokinetics of atipamezole, a novel alpha 2-adrenoceptor antagonist—a randomized, double-blind cross-over study in healthy male volunteers. Br J Clin Pharmacol 30:97–106

    PubMed  CAS  Google Scholar 

  • Kiss A, Mikkelsen JD (2005) Oxytocin—anatomy and functional assignments: a minireview. Endocr Regul 39:97–105

    PubMed  CAS  Google Scholar 

  • Lee I, Yamagishi N, Oboshi K, Yamada H (2003) Antagonistic effects of intravenous or epidural atipamezole on xylazine-induced dorsolumbar epidural analgesia in cattle. Vet J 166:194–197. doi:10.1016/S1090-0233(03)00026-1

    Article  PubMed  CAS  Google Scholar 

  • Liposits Z, Paull WK, Sétáló G, Vigh S (1985) Evidence for local corticotropin releasing factor (CRF)-immunoreactive neuronal circuits in the paraventricular nucleus of the rat hypothalamus. An electron microscopic immunohistochemical analysis. Histochemistry 83:5–16. doi:10.1007/BF00495294

    Article  PubMed  CAS  Google Scholar 

  • Lyness J, Robinson AG, Sheridan MN, Gash DM (1985) Antidiuretic effects of oxytocin in the Brattleboro rat. Experientia 41:1444–1446. doi:10.1007/BF01950026

    Article  PubMed  CAS  Google Scholar 

  • Ma D, Morris JF (2002) Protein synthetic machinery in the dendrites of the magnocellular neurosecretory neurons of wild-type Long-Evans and homozygous Brattleboro rats. J Chem Neuroanat 23:171–186. doi:10.1016/S0891-0618(01)00158-2

    Article  PubMed  CAS  Google Scholar 

  • Ma D, Rajakumaraswamy N, Maze M (2005) Alpha2-Adrenoceptor agonists: shedding light on neuroprotection? Br Med Bull 71:77–92. doi:10.1093/bmb/ldh036

    Article  PubMed  CAS  Google Scholar 

  • Melnikova VI, Raison D, Hardin-Pouzet H, Ugrumov MV, Calas A, Grange-Messent V (2006) Noradrenergic regulation of galanin expression in the supraoptic nucleus in the rat hypothalamus. An ex vivo study. J Neurosci Res 83:857–863. doi:10.1002/jnr.20779

    Article  PubMed  CAS  Google Scholar 

  • Mikkelsen JD, Vrang N, Mrosovsky N (1998) Expression of Fos in the circadian system following nonphotic stimulation. Brain Res Bull 47:367–376. doi:10.1016/S0361-9230(98)00121-X

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates. Academic Press, Sydney

    Google Scholar 

  • Pertovaara A, Haapalinna A, Sirviö J, Virtanen R (2005) Pharmacological properties, central nervous system effects, and potential therapeutic applications of atipamezole, a selective alpha2-adrenoceptor antagonist. CNS Drug Rev 11:273–288

    PubMed  CAS  Google Scholar 

  • Pirnik Z, Jezova D, Mikkelsen JD, Kiss A (2005) Xylazine activates oxytocinergic but not asopressinergic hypothalamic neurons under normal and hyperosmotic conditions in rats. Neurochem Int 47:458–465. doi:10.1016/j.neuint.2005.07.001

    Article  PubMed  CAS  Google Scholar 

  • Rioja E, Kerr CL, Enouri SS, McDonell WN (2008) Sedative and cardiopulmonary effects of medetomidine hydrochloride and xylazine hydrochloride and their reversal with atipamezole hydrochloride in calves. Am J Vet Res 69:319–329. doi:10.2460/ajvr.69.3.319

    Article  PubMed  CAS  Google Scholar 

  • Scheinin H, MacDonald E, Scheinin M (1988) Behavioural and neurochemical effects of antipamezole, a novel alpha 2-adrenoceptor antagonist. Eur J Pharmacol 151:35–42. doi:10.1016/0014-2999(88)90689-9

    Article  PubMed  CAS  Google Scholar 

  • Sherman TG, Day R, Civelli O, Douglass J, Herbert E, Akil H, Watson SJ (1988) Regulation of hypothalamic magnocellular neuropeptides and their mRNAs in the Brattleboro rat: coordinate responses to further osmotic challenge. J Neurosci 8:3785–3796

    PubMed  CAS  Google Scholar 

  • Simson PE, Weiss JM (1987) Alpha-2 receptor blockade increases responsiveness of locus coeruleus neurons to excitatory stimulation. J Neurosci 7:1732–1740

    PubMed  CAS  Google Scholar 

  • Sladek CD, Kapoor JR (2001) Neurotransmitter/neuropeptide interactions in the regulation of neurohypophyseal hormone release. Exp Neurol 171:200–209. doi:10.1006/exnr.2001.7779

    Article  PubMed  CAS  Google Scholar 

  • Swaab DF, Nijveldt F, Pool CW (1975) Distribution of oxytocin and vasopressin in the rat supraoptic and paraventricular nucleus. J Endocrinol 67:461–462. doi:10.1677/joe.0.0670461

    Article  PubMed  CAS  Google Scholar 

  • Thompson JR, Hsu WH, Kersting KW (1989) Antagonistic effect of idazoxan on xylazine-induced central nervous system depression and bradycardia in calves. Am J Vet Res 50:734–736

    PubMed  CAS  Google Scholar 

  • Toufexis DJ, Thrivikraman KV, Plotsky PM, Morilak DA, Huang N, Walker CD (1998) Reduced noradrenergic tone to the hypothalamic paraventricular nucleus contributes to the stress hyporesponsiveness of lactation. J Neuroendocrinol 10:417–427. doi:10.1046/j.1365-2826.1998.00223.x

    Article  PubMed  CAS  Google Scholar 

  • Tsujino T, Sano H, Kubota Y, Hsieh ST, Miyajima T, Saito K, Nakajima M, Saito N, Yokoyama M (1992) Expression of Fos-like immunoreactivity by yohimbine and clonidine in the rat brain. Eur J Pharmacol 226:69–78. doi:10.1016/0922-4106(92)90084-9

    Article  PubMed  CAS  Google Scholar 

  • Valtin H, Schroeder HA, Bernischke K, Sokol HW (1962) Familial hypothalamic diabetes insipidus in rats. Nature 196:1109–1110. doi:10.1038/1961109a0

    Article  PubMed  CAS  Google Scholar 

  • Wang YF, Shibuya I, Kabashima N, Setiadji VS, Isse T, Ueta Y, Yamashita H (1998) Inhibition of spontaneous inhibitory postsynaptic currents (IPSC) by noradrenaline in rat supraoptic neurons through presynaptic alpha2-adrenoceptors. Brain Res 807:61–69. doi:10.1016/S0006-8993(98)00732-X

    Article  PubMed  CAS  Google Scholar 

  • Way SA, Douglas AJ, Dye S, Bicknell RJ, Leng G, Russell JA (1993) Endogenous opioid regulation of oxytocin release during parturition is reduced in ovariectomized rats. J Endocrinol 138:13–22. doi:10.1677/joe.0.1380013

    Article  PubMed  CAS  Google Scholar 

  • Woldbye DP, Greisen MH, Bolwig TG, Larsen PJ, Mikkelsen JD (1996) Prolonged induction of c-fos in neuropeptide Y- and somatostatin-immunoreactive neurons of the rat dentate gyrus after electroconvulsive stimulation. Brain Res 720:111–119. doi:10.1016/0006-8993(96)00158-8

    Article  PubMed  CAS  Google Scholar 

  • Zhu L, Onaka T (2002) Involvement of medullary A2 noradrenergic neurons in the activation of oxytocin neurons after conditioned fear stimuli. Eur J Neurosci 16:2186–2198. doi:10.1046/j.1460-9568.2002.02285.x

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by Vega 2/7003/27, CE SAS CENDO, and APVV-0148-06 grants. We also wish to give thanks to the Orion Pharma, Finland for kind providing with atipamezole substance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Kiss.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bundzikova, J., Pirnik, Z., Zelena, D. et al. α2-Adrenergic Impact on Hypothalamic Magnocellular Oxytocinergic Neurons in Long Evans and Brattleboro Rats: Effects of Agonist and Antagonists. Cell Mol Neurobiol 29, 1015–1023 (2009). https://doi.org/10.1007/s10571-009-9388-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-009-9388-0

Keywords

Navigation