Skip to main content

Advertisement

Log in

Synthesis, characterization and ampyrone drug release behavior of magnetite nanoparticle/2,3-dialdehyde cellulose-6-phosphate composite

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

A Correction to this article was published on 18 December 2019

This article has been updated

Abstract

In this study, a magnetically enhanced drug delivery composite was synthesized by co-precipitating magnetite nanoparticle (MNP) with 2,3-dialdehyde cellulose-6-phosphate (DACP) and investigated for ampyrone drug loading and controlled delivery. The magnetic core containing Fe3O4 was synthesized through the intramolecular Cannizzaro reaction during the in situ preparation of MNPs in the presence of sodium hydroxide solution, producing hydroxyl acid cellulose phosphate (HACP). The prepared magnetite nanocomposite MNP/HACP was characterized using FT-IR, SEM–EDX, XRD, TEM, VSM and TGA. The release profiles of ampyrone loaded on MNP/HACP showed a continuous release rate of more than 95% after 50 h, compared to the lower release rate of DACP, where only 60% of the loaded ampyrone was released after 50 h. These results show that MNP/HACP nanocomposites present an enhanced loading-release system with the potential to act as a magnetically enhanced drug delivery system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Change history

  • 18 December 2019

    In the original publication of the article, one of the co-authors name was mistakenly missed out. It has been updated in this correction.

References

  • Aguilera G, Berry C, West R, Gonzalez-Monterrubio E, Angulo-Molina A, Arias-Carri´on O, Angel M´endez-Rojas M (2019) Carboxymethyl cellulose coated magnetic nanoparticle transport across a human lung microvascular endothelial cell model of the blood–brain barrier. Nanoscale Adv 1:671–685

    Article  CAS  Google Scholar 

  • Alam MS, Choi JH, Lee D (2012) Synthesis of novel Schiff base analogues of 4-amino-1, 5-dimethyl-2-phenylpyrazol-3-one and their evaluation for antioxidant and anti-inflammatory activity. Bioorg Med Chem 20(13):4103–4108

    Article  CAS  Google Scholar 

  • Allia P, Barrera G, Tiberto P, Nardi T, Leterrier Y, Sangermano M (2014) Fe3O4 nanoparticle and nanocomposites with potential application in biomedicine and in communication technologies: nanoparticle aggregation, interaction, and effective magnetic anisotropy. J Appl Phys 116(11):113903

    Article  Google Scholar 

  • Dias F, Duarte C (2013) Cellulose and its derivatives use in the pharmaceutical compounding practice. In: Van De Ven TGM (ed) Cellulose–medical pharmaceutical and electronic applications. In Tech Open, Croatia, pp 141–162

    Google Scholar 

  • Edgar KJ (2004) Cellulose esters, organic. In: Korschwitz J (ed) Encyclopedia of polymer science and technology, 3rd edn. pp 131–133. Wiley, New York

  • Edgar KJ (2007) Cellulose esters in drug delivery. Cellulose 14:49–64

    Article  CAS  Google Scholar 

  • El-kott A, Syef AF, Alshehri MA, Al Dosage S, Keshk SMAS (2019) Suppression efficacy of lignosulfonate/mercerized cotton composite against cancer cell’s activities. Adv Compos Lett 28:1–9

    Article  Google Scholar 

  • Fernandes VJ Jr, Araujo AS, Fonseca VM, Fernandes NS, Silva DR (2002) Thermogarvimetric evaluation of polyester/sisal flame retarded composite. Thermochem Acta 392–393:71–77

    Article  Google Scholar 

  • Francesca U, Giuseppe R, Agnese M, Fabiana Q, Maria R (2006) Cyclodextrins in the production of large porous particles: development of dry powders for the sustained release of insulin to the lungs. Eur J Pharm Sci 28:423–432

    Article  Google Scholar 

  • Fricain JC, Granja PL, Barbosa MA, de Jeso B, Barthe N, Baquey C (2001) Cellulose phosphates as biomaterials. In vivo biocompatibility studies. Biomaterials 23:971–980

    Article  Google Scholar 

  • Frisch MJ, Trucks GW, Schlegel HB et al. (2009) Gaussian-09, Revision A.1, 483 Gaussian, Inc., Wallingford, CT

  • Godwin A, Bolina K, Clochard M, Dinand E, Rankin S, Simic S, Brocchini S (2001) New strategies for polymer development in pharmaceutical science- a short review. J Pharm Pharmacol 53:1175–1184

    Article  CAS  Google Scholar 

  • Gomez-Lopera SA, Plaza RC, Delgado AV (2001) Synthesis and characterization of spherical magnetite/biodegradable polymer composite particles. J Colloid Interface Sci 240(1):40–47

    Article  CAS  Google Scholar 

  • Heinze T, Liebert TF, Pfeiffer KS, Hussain MA (2003) Unconventional cellulose esters: synthesis, characterization and structure-property relations. Cellulose 10:283–296

    Article  CAS  Google Scholar 

  • Irfan A, Chaudhry AR et al (2017) Exploring the charge transfer nature and electro-optical properties of anthracene-based sensitizers @TiO2 cluster. J Taiwan Inst Chem Eng 80(Supplement C):239–246

    Article  CAS  Google Scholar 

  • Jiang W, Yang HC, Yang SY, Horng HE, Hung JC, Chen YC, Hong CY (2004) Preparation and properties of superparamagnetic nanoparticle with narrow size distribution and biocompatible. J Magn Magn Mater 283:210–215

    Article  CAS  Google Scholar 

  • Kayal S, Ramanujan RV (2010a) Doxorubicin loaded PVA coated iron oxide nanoparticle for targeted drug delivery. Mater Sci Eng C 30:484–490

    Article  CAS  Google Scholar 

  • Kayal S, Ramanujan RV (2010b) Doxorubicin loaded PVA coated iron oxide nanoparticle for targeted drug delivery. Mater Sci Eng C 30(3):484–490

    Article  CAS  Google Scholar 

  • Keshk SMAS, Salah M (2014) Bacterial cellulose and its phosphoric dichloride for efficient removal of metal ions. Amer J Polym Sci 4:10–16

  • Keshk SMA, Gouda M (2017) Natural biodegradable medical polymers: cellulose. In: Xiang Z (ed) Science and principles of biodegradable and bioresorbable medical polymers-materials and properties, pp 279–294. Elsevier, ISBN: 978-0-08-100372-5

  • Keshk SMAS, Bondock S, El-Zahhar A, Abu Haija M (2019a) Synthesis and characterization of novel Schiff’s bases derived from cellulose phosphate 2,3-dialdehyde. Cellulose 26:3703–3712

    Article  CAS  Google Scholar 

  • Keshk SMAS, Bondock S, Youssef AMS, El-Zahhar A (2019b) Novel synthesis of flame-retardant magnetic nanoparticle/hydroxyl acid cellulose-6-phosphate composite. Mater Res Express 6(8):085310

    Article  CAS  Google Scholar 

  • Keshk SMAS, El-Zahhar A, Al-Sehemi AG, Irfan A, Bondock S (2019c) Synthesis and physicochemical characterization of a magnetic nanoparticle/dialdehyde cellulose composite as a flame retardant. Mater Res Express 6(2):025312

    Article  Google Scholar 

  • Kim S, Kim JH, Jeon O, Kwon IC, Park K (2008) Engineered polymers for advanced drug delivery. Eur J Pharm Biopharm 71:420–430

    Article  Google Scholar 

  • Koksharov YA (2009) Magnetism of nanoparticle: effects of size, shape, and interactions. In: Gubin SP (ed) Magnetic nanoparticle. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 197–254

    Chapter  Google Scholar 

  • Leone G, Torricelli P, Giardino R, Barbucci R (2008) New phosphorylated derivatives of carboxymethylcellulose with osteogenic activity. Polym Adv Technol 19:824–830

    Article  CAS  Google Scholar 

  • Liechty WB, Kryscio DR, Slaughter BV, Peppas NA (2010) Polymers for drug delivery systems. Annu Rev Chem Biomol Eng 1:149–173

    Article  CAS  Google Scholar 

  • Longzhang Z, Jingwei M, Nengqin J, Yu Z, Hebai S (2009) Chitosan-coated magnetic nanoparticle as carriers of 5-fluorouracil: preparation, characterization and cytotoxicity studies. Colloids Surf B Biointerfaces 68:1–6

    Article  Google Scholar 

  • Nardi T, Sangermano M, Leterrier Y, Allia P, Tiberto P, Månson JAE (2013) UV-cured transparent magnetic polymer nanocomposites. Polymer 54:4472–4479

    Article  CAS  Google Scholar 

  • Patitsa M, Karathanou K, Kanaki Z, Tzioga L, Pippa N, Demetzos C, Verganelakis D, Cournia Z, Klinakis A (2017) Magnetic nanoparticle coated with polyarabic acid demonstrate enhanced drug delivery and imaging properties for cancer theranostic applications. Sci Rep 7:775–782

    Article  Google Scholar 

  • Pham XN, Nguyen TP, Pham TN, Nga TT (2010) Synthesis and characterization of chitosan coated magnetite nanoparticle and their application in curcumin drug delivery. Adv Nat Sci Nanosci Nanotechnol 7:045010

    Article  Google Scholar 

  • Qu J-B, Shao H-H, Jing G-L, Huang F (2013) PEG-chitosan coated iron oxide nanoparticle with high saturated magnetization as carriers of 10-hydroxycamptothecin: preparation, characterization and cytotoxicity studies. Colloids Surf B 102:37–44

    Article  CAS  Google Scholar 

  • Radi S, Toubi Y, Hamdani I, Hakkou A, Souna F, Himri I, Bouakka M (2012) Synthesis, antibacterial and antifungal activities of some new bipyrazolic tripodal derivatives. Res J Chem Sci 2(4):40–44

    CAS  Google Scholar 

  • Shokri J, Adibki K (2013) Application of cellulose and cellulose derivatives in pharmaceutical industries. In: Van De Ven TGM (ed) Cellulose–medical, pharmaceutical and electronic applications. In Tech Open, Croatia, pp 47–66

    Google Scholar 

  • Urquiza E, Cardona F, Duarte C, Cole B, Wu B, Méndez-Rojas M, Cherr G (2017) Facilitation of trace metal uptake in cells by inulin coating of metallic nanoparticle. R Soc Open Sci 4:170480

    Article  Google Scholar 

  • Volkert B, Wolf B, Fischer S, Li N, Lou C (2009) Application of modified bead cellulose as a carrier of active ingredients. Macromol Symp 280:130–135

    Article  CAS  Google Scholar 

  • Yao Y, Miao S, Yu S, Ping Ma L, Sun H, Wang S (2012) Fabrication of Fe3O4/SiO2 core/shell nanoparticle attached to graphene oxide and its use as an adsorbent. J Colloid Interface Sci 379:20–26

    Article  CAS  Google Scholar 

  • Zhang WF, Zhang YH, Jiang Q, Zhao WJ, Yu AJ, Chang H, Lu XM, Xie FW, Ye BX, Zhang SS (2016) Tetraazacalix [2] arence [2] triazine coated Fe3O4/SiO2 magnetic nanoparticle for simultaneous dispersive solid phase extraction and determination of trace multitarget analytes. Anal Chem 88:10523–10532

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through research groups program under Grant Number R.G.P. 1/19/40. Thomas Heinze acknowledged financially supported by the DFG-funded Collaborative Research Centre PolyTarget (SFB 1278, Project A02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sherif M. A. S. Keshk.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keshk, S.M.A.S., El-Zahhar, A.A., Alsulami, Q.A. et al. Synthesis, characterization and ampyrone drug release behavior of magnetite nanoparticle/2,3-dialdehyde cellulose-6-phosphate composite. Cellulose 27, 1603–1618 (2020). https://doi.org/10.1007/s10570-019-02887-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-019-02887-y

Keywords

Navigation