Skip to main content

Advertisement

Log in

Pulse-potential electrochemical fabrication of coaxial-nanostructured polypyrrole/multiwall carbon nanotubes networks on cotton fabrics as stable flexible supercapacitor electrodes with high areal capacitance

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Flexible supercapacitors (FSCs) with a high areal capacitance are essential for future wearable energy-storage devices due to the limitation of available area on the surface of the human body (< 2 m2). To achieve the performance with high areal capacitance, the surface structure of electrodes should be designed carefully. In this paper, a hierarchical composite electrode based on coaxial-nanostructured polypyrrole (PPy) and multiwall carbon nanotube (MWCNT) was electrochemical co-deposited on the surface of the MWCNT-coated cotton fabric (MCF) by a facile pulse potential method. The pulse potential co-deposition conditions-lower potential (EL), the number of cycles (NC) and EL duration time (tL)-played crucial roles in the uniform distribution of MWCNT within PPy/MWCNT composites, thickness of PPy shell and porous morphology. The three-dimension porous networks of PPy/MWCNT/MCF electrodes not only enhanced the efficiency of faradaic redox reactions but also facilitated the accessibility of the electrolyte to electrode surface, accordingly presenting an ultrahigh areal specific capacitance of 5.05 F cm−2 (0.001 V s−1) and unexceptionable cycling stability of 129.20% specific capacitance retention (1000 cycles, 0.02 V s−1). This work provides a new route to develop FSCs electrodes and shows a promising application in wearable energy-storage technology.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Afzal A, Abuilaiwi FA, Habib A, Awais M, Waje SB, Atieh MA (2017) Polypyrrole/carbon nanotube supercapacitors: technological advances and challenges. J Power Sources 352:174–186

    Article  CAS  Google Scholar 

  • Bo Y, Zhao Y, Cai Z, Bahi A, Liu C, Ko F (2018) Facile synthesis of flexible electrode based on cotton/polypyrrole/multi-walled carbon nanotube composite for supercapacitors. Cellulose 25:4079–4091

    Article  CAS  Google Scholar 

  • Chang ZH, Feng DY, Huang ZH, Liu XX (2018) Electrochemical deposition of highly loaded polypyrrole on individual carbon nanotubes in carbon nanotube film for supercapacitor. Chem Eng J 337:552–559

    Article  CAS  Google Scholar 

  • Chen S, Zhitomirsky I (2014) Polypyrrole coated carbon nanotubes for supercapacitors, prepared using indigo carmine as a dispersant and dopant. Mater Lett 135:47–50

    Article  CAS  Google Scholar 

  • Chen Y, Du L, Yang P, Sun P, Yu X, Mai W (2015) Significantly enhanced robustness and electrochemical performance of flexible carbon nanotube-based supercapacitors by electrodepositing polypyrrole. J Power Sources 287:68–74

    Article  CAS  Google Scholar 

  • Chen J, Wang Y, Cao J, Liu Y, Zhou Y, Ouyang JH, Jiat D (2017) Facile co-electrodeposition method for high-performance supercapacitor based on reduced graphene oxide/polypyrrole composite film. ACS Appl Mater Interfaces 9:19831–19842

    Article  CAS  PubMed  Google Scholar 

  • Cherusseri J, Sharma R, Kar KK (2015) Nanotechnology advancements on carbon nanotube/polypyrrole composite electrodes for supercapacitors. Springer, Berlin

    Book  Google Scholar 

  • Chiu HT, Lin JS, Shiau JN (1992) The influence of dopant permeability on electrochromic performance of polypyrrole films. J Appl Electrochem 22:522–527

    Article  CAS  Google Scholar 

  • Davies A, Audette P, Farrow B, Hassan F, Chen Z, Choi JY, Yu A (2011) Graphene-based flexible supercapacitors: pulse-electropolymerization of polypyrrole on free-standing graphene films. J Phys Chem C 115:17612–17620

    Article  CAS  Google Scholar 

  • Fan J, Wan M, Zhu D, Chang B, Pan Z, Xie S (2015) Synthesis, characterizations, and physical properties of carbon nanotubes coated by conducting polypyrrole. J Appl Polym Sci 74:2605–2610

    Article  Google Scholar 

  • Fang Y et al (2010) Self-supported supercapacitor membranes: polypyrrole-coated carbon nanotube networks enabled by pulsed electrodeposition. J Power Sources 195:674–679

    Article  CAS  Google Scholar 

  • Firoz BK, Siva Subramanian SP, Anbu KM (2013) Functionalisation of fabrics with conducting polymer for tuning capacitance and fabrication of supercapacitor. Carbohyd Polym 94:487–495

    Article  CAS  Google Scholar 

  • Ford ENJ, Mendon SK, Thames SF, Ph D, Rawlins JW, Ph D (2010) X-ray Diffraction of cotton treated with neutralized vegetable oil-based macromolecular crosslinkers. J Eng Fibers Fabr 5:10–20

    Google Scholar 

  • Hansora DP, Shimpi NG, Mishra S (2015) Performance of hybrid nanostructured conductive cotton materials as wearable devices: an overview of materials, fabrication, properties and applications. RSC Adv 5:107716–107770

    Article  CAS  Google Scholar 

  • Hertel T, Walkup RE, Avouris P (1998) Deformation of carbon nanotubes by surface van der Waals forces. Phys Rev B 58:13873–79984

    Article  Google Scholar 

  • Jewell D, Chen GZ (2008) Carbon nanotube and conducting polymer composites for supercapacitors. Prog Nat Sci: Mater Int 18:777–788

    Article  CAS  Google Scholar 

  • Jie X et al (2015) Polypyrrole/reduced graphene oxide coated fabric electrodes for supercapacitor application. Org Electron Mater Phys Chem Appl 24:153–159

    Google Scholar 

  • Kaushik V et al (2015) Textile-based electronic components for energy applications: principles, problems, and perspective. Nanomaterials 5:1493–1531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lachman N et al (2015) Tailoring thickness of conformal conducting polymer decorated aligned carbon nanotube electrodes for energy storage. Adv Mater Interfaces 1:1400076(1–6)

    Google Scholar 

  • Lee YK, Lee KJ, Kim DS, Lee DJ, Kim JY (2010) Polypyrrole-carbon nanotube composite films synthesized through gas-phase polymerization. Synth Met 160:814–818

    Article  CAS  Google Scholar 

  • Li X, Zhitomirsky I (2013) Electrodeposition of polypyrrole-carbon nanotube composites for electrochemical supercapacitors. J Power Sources 221:49–56

    Article  CAS  Google Scholar 

  • Liu C, Cai Z, Zhao Y, Zhao H, Ge F (2016a) Potentiostatically synthesized flexible polypyrrole/multi-wall carbon nanotube/cotton fabric electrodes for supercapacitors. Cellulose 23:637–648

    Article  CAS  Google Scholar 

  • Liu Y, Xu K, Zhang X, Qi C, Lv Q, Feng H (2016b) Electrochemical codeposition of graphene/polypyrrole composites on carbon paper for electrochemical capacitors. Curr Appl Phys 16:520–526

    Article  Google Scholar 

  • Lu ZL, Sun KG, Ren S, Jiao MC (2007) Surface modification and dispersion of multi-walled carbon nanotubes. Rare Met Mater Eng 36:100–103

    CAS  Google Scholar 

  • Noftle RE, Pletcher D (1987) The mechanism of electrodeposition of composite polymers including polypyrrole. J Electroanal Chem 227:229–235

    Article  CAS  Google Scholar 

  • Pasta M, Mantia FL, Hu L, Deshazer HD, Cui Y (2010) Aqueous supercapacitors on conductive cotton. Nano Res 3:452–458

    Article  CAS  Google Scholar 

  • Peng C, Chen GZ, Jin J (2008) A comparative study on electrochemical co-deposition and capacitance of composite films of conducting polymers and carbon nanotubes. Electrochim Acta 53:525–537

    Article  CAS  Google Scholar 

  • Sahoo NG, Yong CJ, So HH, Cho JW (2007) Polypyrrole coated carbon nanotubes: synthesis, characterization, and enhanced electrical properties. Synth Met 157:374–379

    Article  CAS  Google Scholar 

  • Sharma RK, Rastogi AC, Desu SB (2008) Pulse polymerized polypyrrole electrodes for high energy density electrochemical supercapacitor. Electrochem Commun 10:268–272

    Article  CAS  Google Scholar 

  • Shen L, Mizutani M, Rodríguez-Calero GG, Hernández-Burgos K, Truong TT, Coates GW, Abruña HD (2017) Hybrid organic electrodes: the rational design and synthesis of high-energy redox-active pendant functionalized polypyrroles for electrochemical energy storage. J Electrochem Soc 164:A1946–A1951

    Article  CAS  Google Scholar 

  • Shi K, Zhitomirsky I (2013) Polypyrrole nanofiber-carbon nanotube electrodes for supercapacitors with high mass loading obtained using an organic dye as a co-dispersant. J Mater Chem A 1:11614–11622

    Article  CAS  Google Scholar 

  • Smith TJ et al (2002) Randomized clinical trial of an implantable drug delivery system compared with comprehensive medical management for refractory cancer pain: impact on pain, drug-related toxicity, and survival. J Clin Oncol 21:4040–4049

    Article  Google Scholar 

  • Tamm J, Raudsepp T, Marandi M, Tamm T (2007) Electrochemical properties of the polypyrrole films doped with benzenesulfonate. Synth Met 157:66–73

    Article  CAS  Google Scholar 

  • Wan C, Jiao Y, Li J (2017) Flexible, highly conductive, and free-standing reduced graphene oxide/polypyrrole/cellulose hybrid papers for supercapacitor electrodes. J Mater Chem A 5:3819–3831

    Article  CAS  Google Scholar 

  • Wang PC, Yu JY (2012) Dopant-dependent variation in the distribution of polarons and bipolarons as charge-carriers in polypyrrole thin films synthesized by oxidative chemical polymerization. React Funct Polym 72:311–316

    Article  CAS  Google Scholar 

  • Wang F et al (2017) Latest advances in supercapacitors: from new electrode materials to novel device designs. Chem Soc Rev 46:6816–6854

    Article  CAS  PubMed  Google Scholar 

  • Wang Y et al (2018) A wearable supercapacitor engaged with gold leaf gilding cloth toward enhanced practicability. ACS Appl Mater Interfaces 10:21297–21305

    Article  CAS  PubMed  Google Scholar 

  • Wei C et al (2017) An all-solid-state yarn supercapacitor using cotton yarn electrodes coated with polypyrrole nanotubes. Carbohyd Polym 169:50–57

    Article  CAS  Google Scholar 

  • Yang QQ et al (2018) Confinement effect of natural hollow fibers enhances flexible supercapacitor electrode performance. Electrochim Acta 260:204–211

    Article  CAS  Google Scholar 

  • Yu G, Xie X, Pan L, Bao Z, Cui Y (2013) Hybrid nanostructured materials for high-performance electrochemical capacitors. Nano Energy 2:213–234

    Article  CAS  Google Scholar 

  • Yu Y, Huang Q, Niu L, Wang D, Yan C, She Y, Zheng Z (2017) Waterproof, ultrahigh areal-capacitance, wearable supercapacitor fabrics. Adv Mater 29:1606679

    Article  CAS  Google Scholar 

  • Yun TG, Bi H, Kim D, Hyun S, Han SM (2015) Polypyrrole-MnO2-coated textile-based flexible-stretchable supercapacitor with high electrochemical and mechanical reliability. ACS Appl Mater Interfaces 7:9228–9234

    Article  CAS  PubMed  Google Scholar 

  • Zhi X, Zhou H (2018) Optimizing the preparation conditions of polypyrrole electrodes for enhanced electrochemical capacitive performances. Chem Pap 72:2513–2522

    Article  CAS  Google Scholar 

  • Zhou H (2018) Optimized preparation of core-shell composites based on polypyrrole doped with carbon nanotubes for high performance electrochemical capacitors. J Mater Sci Mater Electron 29:7857–7866

    Article  CAS  Google Scholar 

  • Zhou M, Heinze J (1999) Electropolymerization of pyrrole and electrochemical study of polypyrrole: 1. Evidence for structural diversity of polypyrrole. Electrochim Acta 44:1733–1748

    Article  CAS  Google Scholar 

  • Zhou H, Zhai HJ (2016) A highly flexible solid-state supercapacitor based on the carbon nanotube doped graphene oxide/polypyrrole composites with superior electrochemical performances. Org Electron 37:197–206

    Article  CAS  Google Scholar 

  • Zhou H, Han G, Xiao Y, Chang Y, Zhai HJ (2015) A comparative study on long and short carbon nanotubes-incorporated polypyrrole/poly(sodium 4-styrenesulfonate) nanocomposites as high-performance supercapacitor electrodes. Synth Met 209:405–411

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by the National Natural Science Foundation of China (51303022), the Fundamental Research Funds for the Central Universities (2232015D3-17) and Industry-University-Institute Project (Booster Plan) of Shanghai Municipal Education Commission (15cxy55).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaping Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3797 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Yang, B., Zhou, M. et al. Pulse-potential electrochemical fabrication of coaxial-nanostructured polypyrrole/multiwall carbon nanotubes networks on cotton fabrics as stable flexible supercapacitor electrodes with high areal capacitance. Cellulose 26, 4071–4084 (2019). https://doi.org/10.1007/s10570-019-02370-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-019-02370-8

Keywords

Navigation