Skip to main content
Log in

Rheological properties of cellulose nanocrystal-polymeric systems

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Rod-like cellulose nanocrystals (CNC) were incorporated into different systems containing polymers (most of them are soluble polysaccharides, such as chitosan, gum arabic, sodium alginate, hydroxypropyl methylcellulose and sodium carboxylmethyl cellulose) of varying charge properties and molecular structures. The dependence of the thickening and rheological behavior of CNC dispersion with concentration were compared with classic models for spheres. It is evident that rod-like particles are more effective in achieving viscosity enhancement at lower particle loading. By varying the concentrations of each polymeric system, the phase diagrams of non-absorbing and absorbing polymers were determined. The gelation behavior of anisotropic CNC dispersion in the presence of various kinds of polymers was investigated, and the thickening effect has the following trends: cationic > anionic > nonionic. In addition, the molecular weight and conformation of the polymer chains had an impact on the viscosity. Hydroxypropyl methylcellulose is the most effective in promoting gelation of 3 wt% CNC dispersion. Understanding the rheological properties of various CNC-polymer complexes will be critical for their application in oil and gas, food and consumer goods.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aubry T, Largenton B, Moan M (1999) Rheological study of fumed silica suspensions in chitosan solutions. Langmuir 15(7):2380–2383

    Article  CAS  Google Scholar 

  • Balazs AC, Emrick T, Russell TP (2002) Nanoparticle polymer composites: where two small worlds meet. Science 314(5802):1107–1110

    Article  CAS  Google Scholar 

  • Boluk Y, Lahiji R, Zhao L et al (2011) Suspension viscosities and shape parameter of cellulose nanocrystals (CNC). Colloids Surfaces A Physicochem Eng Asp 377(1):297–303

    Article  CAS  Google Scholar 

  • Boluk Y, Zhao L, Incani V (2012) Dispersions of nanocrystalline cellulose in aqueous polymer solutions: structure formation of colloidal rods. Langmuir 28(14):6114–6123

    Article  CAS  PubMed  Google Scholar 

  • Cassagnau P (2013) Linear viscoelasticity and dynamics of suspensions and molten polymers filled with nanoparticles of different aspect ratios. Polymer 54(18):4762–4775

    Article  CAS  Google Scholar 

  • Chang Y, McLandsborough L, McClements DJ (2014) Antimicrobial delivery systems based on electrostatic complexes of cationic ɛ-polylysine and anionic gum arabic. Food Hydrocoll 35:137–143

    Article  CAS  Google Scholar 

  • Derakhshandeh B, Petekidis G, Shafiei Sabet S et al (2013) Ageing, yielding, and rheology of nanocrystalline cellulose suspensions. J Rheol 57(1):131–148

    Article  CAS  Google Scholar 

  • Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications Chem. Rev. 110(6):3479–3500

    CAS  Google Scholar 

  • Hu Z, Cranston ED, Ng R et al (2014) Tuning cellulose nanocrystal gelation with polysaccharides and surfactants. Langmuir 30(10):2684–2692

    Article  CAS  PubMed  Google Scholar 

  • Iwamoto S, Lee SH, Endo T (2014) Relationship between aspect ratio and suspension viscosity of wood cellulose nanofibers. Polym J 46(1):73–76

    Article  CAS  Google Scholar 

  • Jeong J, Li C, Kwon Y et al (2013) Particle shape effect on the viscosity and thermal conductivity of ZnO nanofluids. Int J Refrig 36(8):2233–2241

    Article  CAS  Google Scholar 

  • Khouri S, Shams M, Tam KC (2014) Determination and prediction of physical properties of cellulose nanocrystals from dynamic light scattering measurements. J Nanoparticle Res 16(7):2499

    Article  CAS  Google Scholar 

  • Li MC, Wu Q, Song K et al (2015) Cellulose nanoparticles: structure–morphology–rheology relationships. ACS Sustain Chem Eng 3(5):821–832

    Article  CAS  Google Scholar 

  • Liu D, Chen X, Yue Y et al (2011) Structure and rheology of nanocrystalline cellulose. Carbohyd Polym 84(1):316–322

    Article  CAS  Google Scholar 

  • Lu A, Hemraz U, Khalili Z et al (2014) Unique viscoelastic behaviors of colloidal nanocrystalline cellulose aqueous suspensions. Cellulose 21(3):1239–1250

    Article  CAS  Google Scholar 

  • Matheson RR Jr (1980) Viscosity of solutions of rigid rodlike macromolecules. Macromolecules 13(3):643–648

    Article  CAS  Google Scholar 

  • Oguzlu H, Danumah C, Boluk Y (2017) Colloidal behavior of aqueous cellulose nanocrystal suspensions. Curr Opin Colloid Interface Sci 29:46–56

    Article  CAS  Google Scholar 

  • Pang Q, Tang J, Huang H et al (2015) A nitrogen and sulfur dual-doped carbon derived from polyrhodanine@cellulose for advanced lithium–sulfur batteries. Adv Mater 27(39):6021–6028

    Article  CAS  PubMed  Google Scholar 

  • Peng BL, Dhar N, Liu HL et al (2011) Chemistry and applications of nanocrystalline cellulose and its derivatives: a nanotechnology perspective. Can J Chem Eng 89(5):1191–1206

    Article  CAS  Google Scholar 

  • Qiao C, Chen G, Zhang J et al (2016) Structure and rheological properties of cellulose nanocrystals suspension. Food Hydrocoll 55:19–25

    Article  CAS  Google Scholar 

  • Reid MS, Villalobos M, Cranston ED (2017) The role of hydrogen bonding in non-ionic polymer adsorption to cellulose nanocrystals and silica colloids. Curr Opin Colloid Interface Sci 29:76–82

    Article  CAS  Google Scholar 

  • Risica D, Barbetta A, Vischetti L et al (2010) Rheological properties of guar and its methyl, hydroxypropyl and hydroxypropyl-methyl derivatives in semidilute and concentrated aqueous solutions. Polymer 51(9):1972–1982

    Article  CAS  Google Scholar 

  • Shafeiei-Sabet S, Hamad WY, Hatzikiriakos SG (2013) Influence of degree of sulfation on the rheology of cellulose nanocrystal suspensions. Rheol Acta 52(8–9):741–751

    Article  CAS  Google Scholar 

  • Shafiei-Sabet S, Hamad WY, Hatzikiriakos SG (2012) Rheology of nanocrystalline cellulose aqueous suspensions. Langmuir 28(49):17124–17133

    Article  CAS  PubMed  Google Scholar 

  • Shafiei-Sabet S, Hamad WY, Hatzikiriakos SG (2014) Ionic strength effects on the microstructure and shear rheology of cellulose nanocrystal suspensions. Cellulose 21(5):3347–3359

    Article  CAS  Google Scholar 

  • Shi Z, Tang J, Chen L et al (2015) Enhanced colloidal stability and antibacterial performance of silver nanoparticles/cellulose nanocrystal hybrids. J Mater Chem B 3(4):603–611

    Article  CAS  Google Scholar 

  • Tan BH, Tam KC, Lam YC et al (2004) A semi-empirical approach for modeling charged soft microgel particles. J Rheol 48(4):915–926

    Article  CAS  Google Scholar 

  • Tan BH, Pelton RH, Tam KC (2010) Microstructure and rheological properties of thermo-responsive poly (N-isopropylacrylamide) microgels. Polymer 51(14):3238–3243

    Article  CAS  Google Scholar 

  • Tanaka R, Saito T, Ishii D et al (2014) Determination of nanocellulose fibril length by shear viscosity measurement. Cellulose 21(3):1581–1589

    Article  CAS  Google Scholar 

  • Tang J, Song Y, Berry RM et al (2014a) Polyrhodanine coated cellulose nanocrystals as optical pH indicators. RSC Adv 4(104):60249–60252

    Article  CAS  Google Scholar 

  • Tang J, Lee MFX, Zhang W et al (2014b) Dual responsive pickering emulsion stabilized by poly [2-(dimethylamino) ethyl methacrylate] grafted cellulose nanocrystals. Biomacromol 15(8):3052–3060

    Article  CAS  Google Scholar 

  • Tang J, Song Y, Tanvir S et al (2015a) Polyrhodanine coated cellulose nanocrystals: a sustainable antimicrobial agent. ACS Sustain Chem Eng 3(8):1801–1809

    Article  CAS  Google Scholar 

  • Tang J, Shi Z, Berry RM et al (2015b) Mussel-inspired green metallization of silver nanoparticles on cellulose nanocrystals and their enhanced catalytic reduction of 4-nitrophenol in the presence of β-cyclodextrin. Ind Eng Chem Res 54(13):3299–3308

    Article  CAS  Google Scholar 

  • Tang J, Berry RM, Tam KC (2016) Stimuli-responsive cellulose nanocrystals for surfactant-free oil harvesting. Biomacromol 17(5):1748–1756

    Article  CAS  Google Scholar 

  • Tang J, Sisler J, Grishkewich N et al (2017) Functionalization of cellulose nanocrystals for advanced applications. J Colloid Interface Sci 494:397–409

    Article  CAS  PubMed  Google Scholar 

  • ten Brinke AJW, Bailey L, Lekkerkerker HNW et al (2007) Rheology modification in mixed shape colloidal dispersions. Part I: pure components. Soft Matter 3(9):1145–1162

    Article  CAS  Google Scholar 

  • Tzoumaki MV, Moschakis T, Biliaderis CG (2011) Mixed aqueous chitin nanocrystal–whey protein dispersions: microstructure and rheological behavior. Food Hydrocoll 25(5):935–942

    Article  CAS  Google Scholar 

  • Tzoumaki MV, Moschakis T, Biliaderis CG (2013) Effect of soluble polysaccharides addition on rheological properties and microstructure of chitin nanocrystal aqueous dispersions. Carbohydr Polym 95(1):324–331

    Article  CAS  PubMed  Google Scholar 

  • Ureña-Benavides EE, Ao G, Davis VA et al (2011) Rheology and phase behavior of lyotropic cellulose nanocrystal suspensions. Macromolecules 44(22):8990–8998

    Article  CAS  Google Scholar 

  • Wu Q, Meng Y, Wang S et al (2014) Rheological behavior of cellulose nanocrystal suspension: influence of concentration and aspect ratio. J Appl Polym Sci 131(15):40525

    Google Scholar 

Download references

Acknowledgments

K. C. Tam would like to acknowledge the support from CFI and NSERC.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Baoliang Peng or Kam Chiu Tam.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 334 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, B., Tang, J., Wang, P. et al. Rheological properties of cellulose nanocrystal-polymeric systems. Cellulose 25, 3229–3240 (2018). https://doi.org/10.1007/s10570-018-1775-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-018-1775-6

Keywords

Navigation