Skip to main content
Log in

Enhanced wettability and moisture retention of cotton fabrics coated with self-suspended chitosan derivative

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

From the industrial viewpoint, it would be desirable to use neutral aqueous solution when applying chitosan coatings for textile treatment. However, in most cases, chitosan only dissolves in acid solvents. In this work, a self-suspended chitosan derivative with liquid-like behavior was prepared by decorating chitosan with a quaternary ammonium salt followed by ion exchange with nonylphenol polyoxyethylene ether sodium sulfate (NPES). The chitosan derivative with higher NPES content dissolved in neutral aqueous solution, and even exhibited liquid-like viscous behavior without water at room temperature. The morphology, structure, composition, and rheological behavior of the chitosan derivative were systematically characterized using various methods. It was found that incorporation of NPES into the chitosan structure could greatly enhance its dispersion, while the modulus and viscosity of the derivative gradually decreased with increasing temperature. Moreover, the novel chitosan derivative not only directly coated cotton fabric via hydrogen-bonding interaction without removing water but also improved the long-term wettability and moisture retention because of the dual-layer ion structure of the chitosan derivative. The results showed that cotton fabrics coated with such chitosan derivatives could be developed as wound dressing materials in future work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Azarova YA, Pestov AV, Bratskaya SY (2016) Application of chitosan and its derivatives for solid-phase extraction of metal and metalloid ions: a mini-review. Cellulose 23(4):2273–2289

    Article  CAS  Google Scholar 

  • Badawy MEI, Rabea EI (2014) Synthesis and antifungal property of N-(aryl) and quaternary N-(aryl) chitosan derivatives against Botrytis cinerea. Cellulose 21(4):3121–3137

    Article  CAS  Google Scholar 

  • Bharmoria P, Singh T, Kumar A (2013) Complexation of chitosan with surfactant like ionic liquids: molecular interactions and preparation of chitosan nanoparticles. J Colloid Interface Sci 407:361–369

    Article  CAS  Google Scholar 

  • Bourlinos AB, Herrera R, Chalkias N, Jiang DD, Zhang Q, Archer LA, Giannelis EP (2005) Surface-functionalized nanoparticles with liquid-like behavior. Adv Mater 17(2):234–237

    Article  CAS  Google Scholar 

  • Bourlinos AB, Ray Chowdhury S, Herrera R, Jiang DD, Zhang Q, Archer LA, Giannelis EP (2010) Functionalized nanostructures with liquid-like behavior: expanding the gallery of available nanostructures. Adv Funct Mater 15(8):1285–1290

    Article  Google Scholar 

  • Cao Z, Shen Z, Luo X, Zhang H, Liu Y, Cai N, Xue Y, Yu F (2017) Citrate-modified maghemite enhanced binding of chitosan coating on cellulose porous membranes for potential application as wound dressing. Carbohydr Polym 166:320–328

    Article  CAS  Google Scholar 

  • Chen D, Chen F, Zhang H, Yin X, Zhou Y (2015) Preparation and characterization of novel hydrophobic cellulose fabrics with polyvinylsilsesquioxane functional coatings. Cellulose 23(1):941–953

    Article  Google Scholar 

  • Fernandes NJ, Koerner H, Giannelis EP, Vaia RA (2013) Hairy nanoparticle assemblies as one-component functional polymer nanocomposites: opportunities and challenges. MRS Commun 3(01):13–29

    Article  CAS  Google Scholar 

  • Fernandes NJ, Wallin TJ, Vaia RA, Koerner H, Giannelis EP (2014) Nanoscale ionic materials. Chem Mater 26(1):84–96

    Article  CAS  Google Scholar 

  • Gartner H, Li Y, Almenar E (2015) Improved wettability and adhesion of polylactic acid/chitosan coating for bio-based multilayer film development. Appl Surf Sci 332:488–493

    Article  CAS  Google Scholar 

  • He J, Wang F, Wu Y, Huang Y, Zhang H (2011) Preparation of the water-soluble chitosan-coated oxidized regenerated cellulose gauze. Cellulose 18(6):1651–1659

    Article  CAS  Google Scholar 

  • Huang J, Li Q, Wang Y, Wang Y, Dong L, Xie H, Xiong C (2011) Self-suspended polyaniline doped with a protonic acid containing a polyethylene glycol segment. Chem Asian J 6(11):2920–2924

    Article  CAS  Google Scholar 

  • Islam S, Bhuiyan MAR, Islam MN (2016) Chitin and chitosan: structure, properties and applications in biomedical engineering. J Polym Environ 25:854–866

    Article  Google Scholar 

  • Jimtaisong A, Saewan N (2013) Utilization of carboxymethyl chitosan in cosmetics. Int J Cosmet Sci 36(1):12–21

    Article  Google Scholar 

  • Kim JY, Lee JK, Lee TS, Park WH (2003) Synthesis of chitooligosaccharide derivative with quaternary ammonium group and its antimicrobial activity against Streptococcus mutans. Int J Biol Macromol 32(1):23–27

    Article  CAS  Google Scholar 

  • Li Q, Dong L, Fang J, Xiong C (2010) Property–structure relationship of nanoscale ionic materials based on multiwalled carbon nanotubes. ACS Nano 4(10):5797–5806

    Article  CAS  Google Scholar 

  • Nthunya LN, Masheane ML, Malinga SP, Nxumalo EN, Mhlanga SD (2017) Environmentally benign chitosan-based nanofibres for potential use in water treatment. Int J Biol Macromol 32(1):23–27

    Google Scholar 

  • Perriman AW, Colfen H, Hughes RW, Barrie CL, Mann S (2009) Solvent-free protein liquids and liquid crystals. Angew Chem Int Ed Engl 48(34):6242–6246

    Article  CAS  Google Scholar 

  • Sakai Y, Hayano K, Yoshioka H, Fujieda T, Saito K, Yoshioka H (2002) Chitosan-coating of cellulosic materials using an aqueous chitosan-CO2 solution. Polym J 34(3):144–148

    Article  CAS  Google Scholar 

  • Sang Z, Zhang W, Zhou Z, Fu H, Tan Y, Sui K, Xia Y (2017) Functionalized alginate with liquid-like behaviors and its application in wet-spinning. Carbohydr Polym 174:933–940

    Article  CAS  Google Scholar 

  • Tang R, Yu Z, Zhang Y, Qi C (2016) Synthesis, characterization, and properties of antibacterial dye based on chitosan. Cellulose 23(3):1741–1749

    Article  CAS  Google Scholar 

  • Tangpasuthadol V, Pongchaisirikul N, Hoven VP (2003) Surface modification of chitosan films. Carbohydr Res 338(9):937–942

    Article  CAS  Google Scholar 

  • Wang Y, Li B, Zhou Y, Jia D (2009) In situ mineralization of magnetite nanoparticles in chitosan hydrogel. Nanoscale Res Lett 4(9):1041–1046

    Article  CAS  Google Scholar 

  • Wang Z, Zheng L, Li C, Zhang D, Xiao Y, Guan G, Zhu W (2013) A novel and simple procedure to synthesize chitosan-graft-polycaprolactone in an ionic liquid. Carbohydr Polym 94(1):505–510

    Article  CAS  Google Scholar 

  • Weng P, Yin X, Yang S, Han L, Tan Y, Chen N, Chen D, Zhou Y, Wang L, Wang H (2017) Functionalized magnesium hydroxide fluids/acrylate-coated hybrid cotton fabric with enhanced mechanical, flame retardant and shape-memory properties. Cellulose. https://doi.org/10.1007/s10570-017-1611-4

    Google Scholar 

  • Yang S, Li S, Yin X, Wang L, Chen D, Zhou Y, Wang H (2016) Preparation and characterization of non-solvent halloysite nanotubes nanofluids. Appl Clay Sci 126:215–222

    Article  CAS  Google Scholar 

  • Yin X, Weng P, Yang S, Han L, Du Z, Wang L, Tan Y (2017) Preparation of viscoelastic gel-like halloysite hybrids and their application in halloysite/polystyrene composites. Polym Int 66(10):1372–1381

    Article  CAS  Google Scholar 

  • Zhu D, Cheng H, Li J, Zhang W, Shen Y, Chen S, Ge Z, Chen S (2016) Enhanced water-solubility and antibacterial activity of novel chitosan derivatives modified with quaternary phosphonium salt. Mater Sci Eng C Mater Biol Appl 61:79–84

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the National Natural Science Foundation of China (51403113, 51403165), Natural Science Foundation of Hubei Province (ZRMS2 0180016), Open Project Program of High-Tech Organic Fibers Key Laboratory of Sichuan Province (PLN2016-02), Natural Science Foundation for Distinguished Young Scientists of Shandong Province (BS2014CL007), Postdoctoral Science Foundation of China and Shandong Province (2016T90610, 2015M571994, and 201501007), and Project of Shandong Province Higher Educational Science and Technology Program (J14LA19). Prof. Yajun Cai from Wuhan University is thanked for help with antibacterial test.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xianze Yin or Yeqiang Tan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, X., Weng, P., Han, L. et al. Enhanced wettability and moisture retention of cotton fabrics coated with self-suspended chitosan derivative. Cellulose 25, 2721–2732 (2018). https://doi.org/10.1007/s10570-018-1707-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-018-1707-5

Keywords

Navigation