Skip to main content
Log in

Reversing the structural chirality of cellulosic nanomaterials

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Nature organizes cellulose, a linear polysaccharide of D-glucose and an important component of plants and trees, into intricate structures with twists in the trunks of trees, microfibrils within cell walls, and at the nanoscale. Manipulating the hierarchical organization of materials requires control down to the molecular level. In computational models cellulose nanocrystals twist, and Quantum Mechanical models have shown recently that chains at the surface of nanocrystals are right-handed, while the interior chains are mostly left-handed. Here we provide experimental evidence showing the induced circular dichroism of two optical dyes reverses when adsorbed onto thin cellulose nanocrystals. The reversal in optical activity is consistent with earlier TD-DFT B3LYP 6-31G calculations of the induced optical activity of Congo red adsorbed onto twisted 1 0 0 crystal surfaces of cellulose and demonstrates control of the chiral molecular interactions at the nanocrystal surface. The results suggest it may be possible to reverse the structural twist handedness of the nanocrystal itself and build chirality-dependent hierarchical supramolecular structures from cellulose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Azzam F, Galliot M, Putaux JL, Heux L, Jean B (2015) Surface peeling of cellulose nanocrystals resulting from periodate oxidation and reductive amination with water-soluble polymers. Cellulose 22(6):3701–3714

    Article  CAS  Google Scholar 

  • Barnette AL, Bradley LC, Veres BD, Schreiner EP, Park YB, Park J, Park S, Kim SH (2011) Selective detection of crystalline cellulose in plant cell walls with sum-frequency-generation (SFG) vibration spectroscopy. Biomacromolecules 12(7):2434–2439

    Article  CAS  Google Scholar 

  • Bates FJ et al (1942) Polarimetry, saccharimetry and the sugars, vol 440. US Government Printing Office Washington, DC

  • Belli S, Dussi S, Dijkstra M, van Roij R (2014) Density functional theory for chiral nematic liquid crystals. Phys Rev E 90(2):020503

    Article  CAS  Google Scholar 

  • Brinchi L, Cotana F, Fortunati E, Kenny J (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydr Polym 94(1):154–169

    Article  CAS  Google Scholar 

  • Bu L, Himmel ME, Crowley MF (2015) The molecular origins of twist in cellulose I-beta. Carbohydr Polym 125:146–152

    Article  CAS  Google Scholar 

  • Conley K, Godbout L, Whitehead MA, van de Ven TGM (2016a) Origin of the twist of cellulosic materials. Carbohydr Polym 135:285–299

    Article  CAS  Google Scholar 

  • Conley K, Whitehead MA, van de Ven TGM (2016b) Chemically peeling layers of cellulose nanocrystals by periodate and chlorite oxidation. Cellulose 23:1553–1563

    Article  CAS  Google Scholar 

  • Conley K, Whitehead MA, van de Ven TGM (2016) Electronic structure calculations of twisted cellulose crystalloids. J For 5(4):54–61

    Google Scholar 

  • Conley K, Whitehead MA, van de Ven TGM (2017) Probing the structural chirality of crystalline cellulose with induced circular dichroism. Cellulose 24(2):479–486

    Article  CAS  Google Scholar 

  • Cui X, Nichols SM, Arteaga O, Freudenthal J, Paula F, Shtukenberg AG, Kahr B (2016) Dichroism in helicoidal crystals. J Am Chem Soc 138(37):12211–12218

    Article  CAS  Google Scholar 

  • Dong XM, Gray DG (1997) Induced circular dichroism of isotropic and magnetically-oriented chiral nematic suspensions of cellulose crystallites. Langmuir 13(11):3029–3034

    Article  CAS  Google Scholar 

  • Elazzouzi-Hafraoui S, Nishiyama Y, Putaux JL, Heux L, Dubreuil F, Rochas C (2008) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9(1):57–65

    Article  CAS  Google Scholar 

  • Engle AR, Purdie N, Hyatt JA (1994) Induced circular dichroism study of the aqueous solution complexation of cello-oligosaccharides and related polysaccharides with aromatic dyes. Carbohydr Res 265(2):181–195

    Article  CAS  Google Scholar 

  • Fernandes AN, Thomas LH, Altaner CM, Callow P, Forsyth VT, Apperley DC, Kennedy CJ, Jarvis MC (2011) Nanostructure of cellulose microfibrils in spruce wood. Proc Natl Acad Sci USA 108(47):E1195–E1203

    Article  Google Scholar 

  • Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110(6):3479–3500

    Article  CAS  Google Scholar 

  • Hadden JA, French AD, Woods RJ (2013) Unraveling cellulose microfibrils: a twisted tale. Biopolymers 99(10):746–756

    Article  CAS  Google Scholar 

  • Hanley SJ, Revol JF, Godbout L, Gray DG (1997) Atomic force microscopy and transmission electron microscopy of cellulose from Micrasterias denticulata; evidence for a chiral helical microfibril twist. Cellulose 4(3):209–220

    Article  CAS  Google Scholar 

  • Hirai A, Inui O, Horii F, Tsuji M (2008) Phase separation behavior in aqueous suspensions of bacterial cellulose nanocrystals prepared by sulfuric acid treatment. Langmuir 25(1):497–502

    Article  Google Scholar 

  • Hosseinidoust Z, Basnet M, van de Ven TG, Tufenkji N (2016) One-pot green synthesis of anisotropic silver nanoparticles. Environ Sci Nano 3:1259–1264

    Article  CAS  Google Scholar 

  • Kannam SK, Oehme DP, Doblin MS, Gidley MJ, Bacic A, Downton MT (2017) Hydrogen bonds and twist in cellulose microfibrils. Carbohydr Polym 175:433–439

    Article  CAS  Google Scholar 

  • Kaushik M, Moores A (2016) Review: nanocelluloses as versatile supports for metal nanoparticles and their applications in catalysis. Green Chem 18(3):622–637

    Article  CAS  Google Scholar 

  • Khandelwal M, Windle A (2014) Origin of chiral interactions in cellulose supra-molecular microfibrils. Carbohydr Polym 106:128–131

    Article  CAS  Google Scholar 

  • Lahiji RR, Xu X, Reifenberger R, Raman A, Rudie A, Moon RJ (2010) Atomic force microscopy characterization of cellulose nanocrystals. Langmuir 26(6):4480–4488

    Article  CAS  Google Scholar 

  • Lehtiö J, Sugiyama J, Gustavsson M, Fransson L, Linder M, Teeri TT (2003) The binding specificity and affinity determinants of family 1 and family 3 cellulose binding modules. Proc Natl Acad Sci USA 100(2):484–489

    Article  Google Scholar 

  • Leppänen K, Andersson S, Torkkeli M, Knaapila M, Kotelnikova N, Serimaa R (2009) Structure of cellulose and microcrystalline cellulose from various wood species, cotton and flax studied by X-ray scattering. Cellulose 16(6):999–1015

    Article  Google Scholar 

  • Majoinen J, Kontturi E, Ikkala O, Gray DG (2012) SEM imaging of chiral nematic films cast from cellulose nanocrystal suspensions. Cellulose 19(5):1599–1605

    Article  CAS  Google Scholar 

  • Majoinen J, Hassinen J, Haataja JS, Rekola HT, Kontturi E, Kostiainen MA, Ras RH, Törmä P, Ikkala O (2016) Chiral plasmonics using twisting along cellulose nanocrystals as a template for gold nanoparticles. Adv Mater 28(26):5262–5267

    Article  CAS  Google Scholar 

  • Malho JM, Morits M, Lobling TI, Majoinen J, Schacher FH, Ikkala O, Groschel AH (2016) Rod-like nanoparticles with striped and helical topography. ACS Macro Lett 5:1185–1190

    Article  CAS  Google Scholar 

  • Matsuo K, Namatame H, Taniguchi M, Gekko K (2012) Vacuum-ultraviolet electronic circular dichroism study of methyl \(\alpha\)-d-glucopyranoside in aqueous solution by time-dependent density functional theory. J Phys Chem A 116(40):9996–10003

    Article  CAS  Google Scholar 

  • Matthews JF, Skopec CE, Mason PE, Zuccato P, Torget RW, Sugiyama J, Himmel ME, Brady JW (2006) Computer simulation studies of microcrystalline cellulose I\(\beta\). Carbohydr Res 341(1):138–152

    Article  CAS  Google Scholar 

  • Mazeau K, Wyszomirski M (2012) Modelling of Congo red adsorption on the hydrophobic surface of cellulose using molecular dynamics. Cellulose 19(5):1495–1506

    Article  CAS  Google Scholar 

  • Mukherjee S, Woods H (1953) X-ray and electron microscope studies of the degradation of cellulose by sulphuric acid. Biochim Biophys Acta 10:499–511

    Article  CAS  Google Scholar 

  • Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose I\(\beta\) from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124(31):9074–9082

    Article  CAS  Google Scholar 

  • Querejeta-Fernández A, Kopera B, Prado KS, Klinkova A, Methot M, Chauve G, Bouchard J, Helmy AS, Kumacheva E (2015) Circular dichroism of chiral nematic films of cellulose nanocrystals loaded with plasmonic nanoparticles. ACS Nano 9(10):10377–10385

    Article  Google Scholar 

  • Revol JF, Bradford H, Giasson J, Marchessault R, Gray D (1992) Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int J Biol Macromol 14(3):170–172

    Article  CAS  Google Scholar 

  • Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8(8):2485–2491

    Article  CAS  Google Scholar 

  • Salmén L, Bergström E (2009) Cellulose structural arrangement in relation to spectral changes in tensile loading FTIR. Cellulose 16(6):975–982

    Article  Google Scholar 

  • Schutz C, Agthe M, Fall AB, Gordeyeva K, Guccini V, Salajková M, Plivelic TS, Lagerwall JP, Salazar-Alvarez G, Bergstrom L (2015) Rod packing in chiral nematic cellulose nanocrystal dispersions studied by small-angle X-ray scattering and laser diffraction. Langmuir 31(23):6507–6513

    Article  CAS  Google Scholar 

  • Shopsowitz KE, Qi H, Hamad WY, MacLachlan MJ (2010) Free-standing mesoporous silica films with tunable chiral nematic structures. Nature 468(7322):422–425

    Article  CAS  Google Scholar 

  • Straley JP (1976) Theory of piezoelectricity in nematic liquid crystals, and of the cholesteric ordering. Phys Rev A 14(5):1835–1841

    Article  CAS  Google Scholar 

  • Usov I, Nyström G, Adamcik J, Handschin S, Schütz C, Fall A, Bergström L, Mezzenga R (2015) Understanding nanocellulose chirality and structure-properties relationship at the single fibril level. Nat Commun 6:7564

    Article  Google Scholar 

  • Zhang X, Wang L, Dong S, Zhang X, Wu Q, Zhao L, Shi Y (2016) Nanocellulose 3, 5-dimethylphenylcarbamate derivative coated chiral stationary phase: preparation and enantioseparation performance. Chirality 28(5):376–381

    Article  CAS  Google Scholar 

  • Zhao H, Kwak JH, Zhang ZC, Brown HM, Arey BW, Holladay JE (2007) Studying cellulose fiber structure by SEM, XRD, NMR and acid hydrolysis. Carbohydr Polym 68(2):235–241

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge funding from the NSERC Innovative Green Wood Fibre Products Network and the NSERC Industrial Research Chair supported by FPInnovations (TGV) and NSERC Discovery Grant (MAW). We are grateful to H. Sleiman and K. Castor for their assistance with circular dichroism.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theo G. M. van de Ven.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 2891 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Conley, K.M., Godbout, L., Whitehead, M.A.(. et al. Reversing the structural chirality of cellulosic nanomaterials. Cellulose 24, 5455–5462 (2017). https://doi.org/10.1007/s10570-017-1533-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-017-1533-1

Keywords

Navigation