Skip to main content
Log in

Enhanced bacterial cellulose production from Gluconobacter xylinus using super optimal broth

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The bacterial cellulose (BC) produced by Gluconobacter xylinus due to its versatile properties, is used in healthcare and industrial applications. However, its use is restricted owing to the limited yield from the existing culture protocols. In the current study, BC production is studied in the presence of Super Optimal Broth with catabolite repression (SOC) medium which is used to revive Escherichia coli cells after electroporation or chemoporation. In SOC medium, Gluconobacter xylinus produces cellulose pellicles within 5 days of incubation with an enhanced conversion of the carbon source to cellulose compared to traditional Hestrin–Schramm (HS) medium. SOC medium also maintains the pH close to 7.0 in static cultures unlike in HS medium where the pH is acidic. The physico-chemical and morphological characteristics of the BC produced in SOC are determined using powder X-ray diffraction (pXRD), thermo gravimetric analysis (TGA), Brunauer–Emmett–Teller (BET) and Barrett–Joyner–Halenda (BJH), and scanning electron microscopy (SEM) analyses. Our results indicate that SOC enhance the yield of bacterial cellulose and allows conversion of 50% of the carbon source to bacterial cellulose, compared to only 7% conversion in the case of traditional HS medium after 7 days of interaction. We also observe an increase in hydration capacity of BC produced using SOC as compared to HS media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Amin MCIM, Abadi AG, Katas H (2014) Purification, characterization and comparative studies of spray-dried bacterial cellulose microparticles. Carbohydr Polym 99:180–189

    Article  CAS  Google Scholar 

  • Bae S, Shoda M (2004) Bacterial cellulose production by fed-batch fermentation in molasses medium. Biotechnol Prog 20(5):1366–1371

    Article  CAS  Google Scholar 

  • Bakre LG, Jaiyeaoba KT (2009) Effects of drying methods on the physicochemical and compressional characteristics of okra powder and the release properties of its metronidazole tablet formulation. Arch Pharm Res 32(2):259–267. doi:10.1007/s12272-009-1231-0

    Article  CAS  Google Scholar 

  • Barud HS, Ribeiro CA, Crespi M, Martines MAU, Dexpert-Ghys J, Marques RFC, Messaddeq Y, Ribeiro SJL (2007) Thermal characterization of bacterial cellulose–phosphate composite membranes. J Therm Anal Calorim 87(3):815–818

    Article  CAS  Google Scholar 

  • Basu S, Omadjela O, Gaddes D, Tadigadapa S, Zimmer J, Catchmark JM (2016) Cellulose microfibril formation by surface-tethered cellulose synthase enzymes. ACS Nano 10(2):1896–1907

    Article  CAS  Google Scholar 

  • Çakar F, Katı A, Özer I, Demirbağ DD, Şahin F, Aytekin AÖ (2014) Newly developed medium and strategy for bacterial cellulose production. Biochem Eng J 92:35–40

    Article  Google Scholar 

  • Chawla PR, Bajaj IB, Survase SA, Singhal RS (2009) Microbial cellulose: fermentative production and applications. Food Technol Biotechnol 47(2):107–124

    CAS  Google Scholar 

  • Cheng K-C, Catchmark JM, Demirci A (2009) Enhanced production of bacterial cellulose by using a biofilm reactor and its material property analysis. J Biol Eng 3:12

    Article  Google Scholar 

  • Dai F, Zai J, Yi R, Gordin ML, Sohn H, Chen S, Wang D (2014) Bottom-up synthesis of high surface area mesoporous crystalline silicon and evaluation of its hydrogen evolution performance. Nat Commun 5:3605. doi:10.1038/ncomms4605

    Google Scholar 

  • Ehrhardt A, Groner S, Bechtold T (2007) Swelling behaviour of cellulosic fibres. Part 1, changes in physical properties. Fibres Text Eastern Eur 5–6(64):46–48

    Google Scholar 

  • Embuscado ME, Marks JS, BeMiller JN (1994) Bacterial cellulose. I. Factors affecting the production of cellulose by Acetobacter xylinum. Food Hydrocoll 8(5):407–418

    Article  CAS  Google Scholar 

  • Erbas Kiziltas E, Kiziltas A, Blumentritt M, Gardner DJ (2015) Biosynthesis of bacterial cellulose in the presence of different nanoparticles to create novel hybrid materials. Carbohydr Polym 129:148–155

    Article  CAS  Google Scholar 

  • Esa F, Tasirin SM, Rahman NA (2014) Overview of bacterial cellulose production and application. Agric Agric Sci Proc 2:113–119

    Google Scholar 

  • Fang L, Catchmark JM (2015) Characterization of cellulose and other exopolysaccharides produced from Gluconacetobacter strains. Carbohydr Polym 115:663–669

    Article  CAS  Google Scholar 

  • Fierro F, Laich F, Garcı RO, Martı JF (2004) High efficiency transformation of Penicillium nalgiovense with integrative and autonomously replicating plasmids. Int J Food Microbiol 90(2):237–248

    Article  CAS  Google Scholar 

  • French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21(2):885–896

    Article  CAS  Google Scholar 

  • French AD, Santiago Cintrón M (2013) Cellulose polymorphy, crystallite size, and the Segal Crystallinity Index. Cellulose 20(1):583–588

    Article  CAS  Google Scholar 

  • Gao C, Wan Y, Yang C, Dai K, Tang T, Luo H, Wang J (2011) Preparation and characterization of bacterial cellulose sponge with hierarchical pore structure as tissue engineering scaffold. J Porous Mater 18(2):139–145

    Article  CAS  Google Scholar 

  • Gorke B, Stulke J (2008) Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat Rev Microbiol 6(8):613–624

    Article  Google Scholar 

  • Guo J, Catchmark JM (2012) Surface area and porosity of acid hydrolyzed cellulose nanowhiskers and cellulose produced by Gluconacetobacter xylinus. Carbohydr Polym 87(2):1026–1037

    Article  CAS  Google Scholar 

  • Halib N, Amin MCIM, Ahmad I (2010) Unique stimuli responsive characteristics of electron beam synthesized bacterial cellulose/acrylic acid composite. J Appl Polym Sci 116(5):2920–2929

    CAS  Google Scholar 

  • Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166(4):557–580

    Article  CAS  Google Scholar 

  • Hestrin S, Schramm M (1954) Synthesis of cellulose by Acetobacter xylinum. 2. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem J 58(2):345–352

    Article  CAS  Google Scholar 

  • Hirai A, Tsuji M, Yamamoto H, Horii F (1998) In situ crystallization of bacterial cellulose III. Influences of different polymeric additives on the formation of microfibrils as revealed by transmission electron microscopy. Cellulose 5(3):201–213

    Article  CAS  Google Scholar 

  • Hong F, Qiu K (2008) An alternative carbon source from konjac powder for enhancing production of bacterial cellulose in static cultures by a model strain Acetobacter aceti subsp. xylinus ATCC 23770. Carbohydr Polym 72(3):545–549

    Article  CAS  Google Scholar 

  • Huang C, Yang XY, Xiong L, Guo HJ, Luo J, Wang B, Zhang HR, Lin XQ, Chen XD (2015a) Evaluating the possibility of using acetone-butanol–ethanol (ABE) fermentation wastewater for bacterial cellulose production by Gluconacetobacter xylinus. Lett Appl Microbiol 60(5):491–496

    Article  CAS  Google Scholar 

  • Huang C, Yang XY, Xiong L, Guo HJ, Luo J, Wang B, Zhang HR, Lin XQ, Chen XD (2015b) Utilization of corncob acid hydrolysate for bacterial cellulose production by Gluconacetobacter xylinus. Appl Biochem Biotechnol 175(3):1678–1688

    Article  CAS  Google Scholar 

  • Karada E, Saraydin D (2002) Swelling of superabsorbent acrylamide/sodium acrylate hydrogels prepared using multifunctional crosslinkers. Turk J Chem 26(6):863–875

    Google Scholar 

  • Keshk SM (2014) Vitamin C enhances bacterial cellulose production in Gluconacetobacter xylinus. Carbohydr Polym 99:98–100

    Article  CAS  Google Scholar 

  • Khan T, Khan S, Park J (2008) Simple fed-batch cultivation strategy for the enhanced production of a single-sugar glucuronic acid-based oligosaccharides by a cellulose-producing Gluconacetobacter hansenii strain. Biotechnol Bioprocess Eng 13(2):240–247

    Article  CAS  Google Scholar 

  • Klemm D, Schumann D, Kramer F, Heßler N, Hornung M, Schmauder H-P, Marsch S (2006) Nanocelluloses as innovative polymers in research and application. Polysaccharides II. D 205:49–96

    Article  CAS  Google Scholar 

  • Kuo C-H, Chen J-H, Liou B-K, Lee C-K (2016) Utilization of acetate buffer to improve bacterial cellulose production by Gluconacetobacter xylinus. Food Hydrocoll 53:98–103

    Article  CAS  Google Scholar 

  • Kurosumi A, Sasaki C, Yamashita Y, Nakamura Y (2009) Utilization of various fruit juices as carbon source for production of bacterial cellulose by Acetobacter xylinum NBRC 13693. Carbohydr Polym 76(2):333–335

    Article  CAS  Google Scholar 

  • Lessard JC (2013) Growth media for E. coli. Methods Enzymol 533:181–189

    Article  CAS  Google Scholar 

  • Li Z, Wang L, Hua J, Jia S, Zhang J, Liu H (2015) Production of nano bacterial cellulose from waste water of candied jujube-processing industry using Acetobacter xylinum. Carbohydr Polym 120:115–119

    Article  CAS  Google Scholar 

  • Lin W-C, Lien C-C, Yeh H-J, Yu C-M, Hsu S-H (2013) Bacterial cellulose and bacterial cellulose–chitosan membranes for wound dressing applications. Carbohydr Polym 94(1):603–611

    Article  CAS  Google Scholar 

  • Lin D, Lopez-Sanchez P, Li R, Li Z (2014) Production of bacterial cellulose by Gluconacetobacter hansenii CGMCC 3917 using only waste beer yeast as nutrient source. Biores Technol 151:113–119

    Article  CAS  Google Scholar 

  • Maeda S, Sawamura A, Matsuda A (2004) Transformation of colonial Escherichia coli on solid media. FEMS Microbiol Lett 236(1):61–64

    Article  CAS  Google Scholar 

  • Mohamad N, Mohd Amin MCI, Pandey M, Ahmad N, Rajab NF (2014) Bacterial cellulose/acrylic acid hydrogel synthesized via electron beam irradiation: accelerated burn wound healing in an animal model. Carbohydr Polym 114:312–320

    Article  CAS  Google Scholar 

  • Mohammadkazemi F, Azin M, Ashori A (2015) Production of bacterial cellulose using different carbon sources and culture media. Carbohydr Polym 117:518–523

    Article  CAS  Google Scholar 

  • Mohite BV, Patil SV (2014) Physical, structural, mechanical and thermal characterization of bacterial cellulose by G. hansenii NCIM 2529. Carbohydr Polym 106:132–141

    Article  CAS  Google Scholar 

  • Nguyen V, Flanagan B, Gidley M, Dykes G (2008) Characterization of cellulose production by a Gluconacetobacter xylinus strain from Kombucha. Curr Microbiol 57(5):449–453

    Article  CAS  Google Scholar 

  • Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51(6):730–750

    Article  CAS  Google Scholar 

  • Norouzian D, Farhangi A, Tolooei S, Saffari Z, Mehrabi MR, Chiani M, Ghassemi S, Farahnak M, Akbarzadeh A (2011) Study of nano-fiber cellulose production by Glucanacetobacter xylinum ATCC 10245. Pak J Biol Sci PJBS 14(15):780–784

    Article  CAS  Google Scholar 

  • Oliveira Barud HG, Barud Hda S, Cavicchioli M, do Amaral TS, de Oliveira OB Jr, Santos DM, Petersen AL, Celes F, Borges VM, de Oliveira CI, Furtado RA, Tavares DC, Ribeiro SJ (2015) Preparation and characterization of a bacterial cellulose/silk fibroin sponge scaffold for tissue regeneration. Carbohydr Polym 128:41–51

    Article  CAS  Google Scholar 

  • Omadjela O, Narahari A, Strumillo J, Mélida H, Mazur O, Bulone V, Zimmer J (2013) BcsA and BcsB form the catalytically active core of bacterial cellulose synthase sufficient for in vitro cellulose synthesis. Proc Natl Acad Sci 110(44):17856–17861

    Article  CAS  Google Scholar 

  • Park S, Park J, Jo I, Cho SP, Sung D, Ryu S, Park M, Min KA, Kim J, Hong S, Hong BH, Kim BS (2015) In situ hybridization of carbon nanotubes with bacterial cellulose for three-dimensional hybrid bioscaffolds. Biomaterials 58:93–102

    Article  CAS  Google Scholar 

  • Rambo CR, Recouvreux DOS, Carminatti CA, Pitlovanciv AK, Antônio RV, Porto LM (2008) Template assisted synthesis of porous nanofibrous cellulose membranes for tissue engineering. Mater Sci Eng C 28(4):549–554

    Article  CAS  Google Scholar 

  • Römling U, Galperin MY (2015) Bacterial cellulose biosynthesis: diversity of operons, subunits, products, and functions. Trends Microbiol 23(9):545–557

    Article  Google Scholar 

  • Ruka DR, Simon GP, Dean KM (2012) Altering the growth conditions of Gluconacetobacter xylinus to maximize the yield of bacterial cellulose. Carbohydr Polym 89(2):613–622

    Article  CAS  Google Scholar 

  • Samavat F, Ali EH, Solgi S, Ahmad PT (2012) KCl single crystals growth with Mn, Ag and in impurities by Czochralski method and study of impurities influence on their properties. Open J Phys Chem 2(3):4

    Article  Google Scholar 

  • Saxena IM, Kudlicka K, Okuda K, Brown R (1994) Characterization of genes in the cellulose-synthesizing operon (acs operon) of Acetobacter xylinum: implications for cellulose crystallization. J Bacteriol 176(18):5735–5752

    Article  CAS  Google Scholar 

  • Schlesinger M, Hamad WY, MacLachlan MJ (2015) Optically tunable chiral nematic mesoporous cellulose films. Soft Matter 11(23):4686–4694

    Article  CAS  Google Scholar 

  • Segal L, Creely JJ, Martin JAE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29(10):786–794

    Article  CAS  Google Scholar 

  • Shah J, Malcolm Brown R Jr (2005) Towards electronic paper displays made from microbial cellulose. Appl Microbiol Biotechnol 66(4):352–355

    Article  CAS  Google Scholar 

  • Shezad O, Khan S, Khan T, Park JK (2010) Physicochemical and mechanical characterization of bacterial cellulose produced with an excellent productivity in static conditions using a simple fed-batch cultivation strategy. Carbohydr Polym 82(1):173–180

    Article  CAS  Google Scholar 

  • Son H-J, Heo M-S, Kim Y-G, Lee S-J (2001) Optimization of fermentation conditions for the production of bacterial cellulose by a newly isolated Acetobacter. Biotechnol Appl Biochem 33(1):1–5

    Article  CAS  Google Scholar 

  • Sun Q-Y, Ding L-W, He L-L, Sun Y-B, Shao J-L, Luo M, Xu Z-F (2009) Culture of Escherichia coli in SOC medium improves the cloning efficiency of toxic protein genes. Anal Biochem 394(1):144–146

    Article  CAS  Google Scholar 

  • Tabarsa T, Sheykhnazari S, Ashori A, Mashkour M, Khazaeian A (2017) Preparation and characterization of reinforced papers using nano bacterial cellulose. Int J Biol Macromol 101:334–340

    Article  CAS  Google Scholar 

  • Tyagi N, Suresh S (2016) Production of cellulose from sugarcane molasses using Gluconacetobacter intermedius SNT-1: optimization and characterization. J Clean Prod 112:71–80. doi:10.1016/j.jclepro.2015.07.054

    Article  CAS  Google Scholar 

  • Ul-Islam M, Khan T, Park JK (2012) Water holding and release properties of bacterial cellulose obtained by in situ and ex situ modification. Carbohydr Polym 88(2):596–603

    Article  CAS  Google Scholar 

  • Ul-Islam M, Ha JH, Khan T, Park JK (2013) Effects of glucuronic acid oligomers on the production, structure and properties of bacterial cellulose. Carbohydr Polym 92(1):360–366

    Article  CAS  Google Scholar 

  • Vasconcelos NF, Feitosa JPA, da Gama FMP, Morais JPS, Andrade FK, de Souza MDSM, de Freitas Rosa M (2017) Bacterial cellulose nanocrystals produced under different hydrolysis conditions: properties and morphological features. Carbohydr Polym 155:425–431

    Article  CAS  Google Scholar 

  • Vazquez A, Foresti M, Cerrutti P, Galvagno M (2013) Bacterial cellulose from simple and low cost production media by Gluconacetobacter xylinus. J Polym Environ 21(2):545–554

    Article  CAS  Google Scholar 

  • Watanabe K, Tabuchi M, Morinaga Y, Yoshinaga F (1998) Structural features and properties of bacterial cellulose produced in agitated culture. Cellulose 5(3):187–200

    Article  CAS  Google Scholar 

  • Wei B, Yang G, Hong F (2011) Preparation and evaluation of a kind of bacterial cellulose dry films with antibacterial properties. Carbohydr Polym 84(1):533–538

    Article  CAS  Google Scholar 

  • Wu J-M, Liu R-H (2012) Thin stillage supplementation greatly enhances bacterial cellulose production by Gluconacetobacter xylinus. Carbohydr Polym 90(1):116–121

    Article  CAS  Google Scholar 

  • Yang XY, Huang C, Guo HJ, Xiong L, Luo J, Wang B, Chen XF, Lin XQ, Chen XD (2014) Beneficial effect of acetic acid on the xylose utilization and bacterial cellulose production by Gluconacetobacter xylinus. Indian J Microbiol 54(3):268–273

    Article  CAS  Google Scholar 

  • Yang XY, Huang C, Guo HJ, Xiong L, Luo J, Wang B, Lin XQ, Chen XF, Chen XD (2016) Bacterial cellulose production from the litchi extract by Gluconacetobacter xylinus. Prep Biochem Biotechnol 46(1):39–43

    Article  CAS  Google Scholar 

  • Zeng X, Small DP, Wan W (2011) Statistical optimization of culture conditions for bacterial cellulose production by Acetobacter xylinum BPR 2001 from maple syrup. Carbohydr Polym 85(3):506–513

    Article  CAS  Google Scholar 

  • Zhao Y, Koizumi S, Yamaguchi D, Kondo T (2014) Hierarchical structure in microbial cellulose: what happens during the drying process. Eur Phys J E Soft Matter 37(12):129

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank INST for financial support. PTC thanks INST for postdoctoral fellowship. Dr. Sharmistha acknowledges DST SERB for Women Excellence Award, 2017 (SB/WEA/06/2016) and INST for financial support. The authors thank Dr. Sangita Roy for helpful suggestions and discussions. The authors thank past and present members of Sinha lab for suggestions and discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharmistha Sinha.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 22149 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandrasekaran, P.T., Bari, N.K. & Sinha, S. Enhanced bacterial cellulose production from Gluconobacter xylinus using super optimal broth. Cellulose 24, 4367–4381 (2017). https://doi.org/10.1007/s10570-017-1419-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-017-1419-2

Keywords

Navigation