Skip to main content
Log in

Antimicrobial paper obtained by dip-coating with modified guanidine-based particle aqueous dispersion

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Nonbiodegradable features and the lack of antimicrobial activity for conventional synthetic polymer-based packaging materials remain as extensive concerns for environmental issues and food safety. In this work, an antimicrobial copolymer PHGH–PPGDE was synthesized via a reaction between polyhexamethylene guanidine hydrochloride (PHGH) and poly(propylene glycol)diglycidyl ether (PPGDE). The obtained PHGH–PPGDE was amphiphilic, antimicrobial and reactive due to the terminal reactive group. The TEM images indicated that PHGH–PPGDE formed aggregated particles dispersed in water. The antimicrobial paper was conveniently prepared by dip-coating a paper matrix in the PHGH–PPGDE aqueous dispersion, or mixing the dispersion with pulp. The resultant paper showed excellent antimicrobial activities against Escherichia coli and improved durability for the nonleaching effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Albert M, Feiertag P, Hayn G, Saf R, Hönig H (2003) Structure-activity relationships of oligoguanidiness influence of counterion, diamine, and average molecular weight on biocidal activities. Biomacromol 4:1811–1817

    Article  CAS  Google Scholar 

  • Amini E, Azadfallah M, Layeghi M, Talaei-Hassanloui R (2016) Silver-nanoparticle-impregnated cellulose nanofiber coating for packaging paper. Cellulose 23(1):557–570

    Article  CAS  Google Scholar 

  • An CJ, McBean E, Huang GH, Yao Y, Zhang P, Chen XJ, Li YP (2016) Multi-soil-layering systems for wastewater treatment in small and remote communities. J Environ Inform 27(2):131–144

    Google Scholar 

  • Arfa AB, Preziosi-Belloy L, Chalier P, Gontard N (2007) Antimicrobial paper based on a soy protein isolate or modified starch coating including carvacrol and cinnamaldehyde. J Agric Food Chem 55:2155–2162

    Article  Google Scholar 

  • Bera S, Zhanel GG, Schweizer F (2010) Antibacterial activity of guanidinylated neomycin B- and kanamycin A-derived amphiphilic lipid conjugates. J Antimicrob Chemother 65(6):1224–1227

    Article  CAS  Google Scholar 

  • Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3(3):238–250

    Article  CAS  Google Scholar 

  • Cutter CN, Willett JL, Siragusa GR (2001) Improved antimicrobial activity of nisin-incorporated polymer films by formulation change and addition of food grade chelator. Lett Appl Microbiol 33(4):325–328

    Article  CAS  Google Scholar 

  • Dutta PK, Tripathi S, Mehrotra GK, Dutta J (2009) Perspectives for chitosan based antimicrobial films in food applications. Food Chem 114(4):1173–1182

    Article  CAS  Google Scholar 

  • Feiertag P, Albert M, Ecker-Eckhofen E-M, Hayn G, Hönig H, Oberwalder HW, Saf R, Schmidt A, Schmidt O, Topchiev D (2003) Structural characterization of biocidal oligoguanidines. Macromol Rapid Commun 24:567–570

    Article  CAS  Google Scholar 

  • Fernandez-Saiz P, Lagaron JM, Hernandez-Munoz P, Ocio MJ (2008) Characterization of antimicrobial properties on the growth of S. aureus of novel renewable blends of gliadins and chitosan of interest in food packaging and coating applications. Int J Food Microbiol 124(1):13–20

    Article  CAS  Google Scholar 

  • Grare M, Dibama HM, Lafosse S, Ribon A, Mourer M, Regnouf-de-Vains JB, Finance C, Duval RE (2010) Cationic compounds with activity against multidrug-resistant bacteria: interest of a new compound compared with two older antiseptics, hexamidine and chlorhexidine. Clin Microbiol Infect 16(5):432–438

    Article  CAS  Google Scholar 

  • Guan Y, Xiao H, Sullivan H, Zheng A (2007) Antimicrobial-modified sulfite pulps prepared by in situ copolymerization. Carbohydr Polym 69(4):688–696

    Article  CAS  Google Scholar 

  • Guan Y, Qian L, Xiao H, Zheng A (2008a) Preparation of novel antimicrobial-modified starch and its adsorption on cellulose fibers: part I. Optimization of synthetic conditions and antimicrobial activities. Cellulose 15(4):609–618

    Article  CAS  Google Scholar 

  • Guan Y, Qian L, Xiao H, Zheng A, He B (2008b) Synthesis of a novel antimicrobial-modified starch and its adsorption on cellulose fibers: part II—adsorption behaviors of cationic starch on cellulose fibers. Cellulose 15(4):619–629

    Article  CAS  Google Scholar 

  • Gutierrez L, Escudero A, Batlle R, Nerin C (2009) Effect of mixed antimicrobial agents and flavors in active packaging films. J Agric Food Chem 57(18):8564–8571

    Article  CAS  Google Scholar 

  • Heydarifard S, Pan Y, Xiao H, Nazhad M, Shipin O (2017) Water-resistant cellulosic filter containing non-leaching antimicrobial starch for water purification and disinfection. Carbohydr Polym 163:146–152

    Article  CAS  Google Scholar 

  • Jaisai M, Baruah S, Dutta J (2012) Paper modified with ZnO nanorods—antimicrobial studies. Beilstein J Nanotechnol 3:684–691

    Article  Google Scholar 

  • Jing L, Chen B, Zhang BY, Li P (2016) An integrated simulation-based process control and operation planning (IS-PCOP) system for marine oily wastewater management. J Environ Inform 28(2):126–134

    Google Scholar 

  • Kamel S (2012) Rapid synthesis of antimicrobial paper under microwave irradiation. Carbohydr Polym 90(4):1538–1542

    Article  CAS  Google Scholar 

  • Khatri V, Halasz K, Trandafilovic LV, Dimitrijevic-Brankovic S, Mohanty P, Djokovic V, Csoka L (2014) ZnO-modified cellulose fiber sheets for antibody immobilization. Carbohydr Polym 109:139–147

    Article  CAS  Google Scholar 

  • Li H, Peng L (2015) Antimicrobial and antioxidant surface modification of cellulose fibers using layer-by-layer deposition of chitosan and lignosulfonates. Carbohydr Polym 124:35–42

    Article  CAS  Google Scholar 

  • Manetti F, Castagnolo D, Raffi F, Zizzari AT, Rajamaki S, D’Arezzo S, Visca P, Cona A, Fracasso ME, Doria D, Posteraro B, Sanguinetti M, Fadda G, Botta M (2009) Synthesis of new linear guanidines and macrocyclic amidinourea derivatives endowed with high antifungal activity against Candida spp. and Aspergillus spp. J Med Chem 52(23):7376–7379

    Article  CAS  Google Scholar 

  • Martins NCT, Freire CSR, Pinto RJB, Fernandes SCM, Pascoal Neto C, Silvestre AJD, Causio J, Baldi G, Sadocco P, Trindade T (2012) Electrostatic assembly of Ag nanoparticles onto nanofibrillated cellulose for antibacterial paper products. Cellulose 19(4):1425–1436

    Article  CAS  Google Scholar 

  • Mauriello G, De Luca E, La Storia A, Villani F, Ercolini D (2005) Antimicrobial activity of a nisin-activated plastic film for food packaging. Lett Appl Microbiol 41(6):464–469

    Article  CAS  Google Scholar 

  • Monteiro DR, Gorup LF, Takamiya AS, Ruvollo-Filho AC, de Camargo ER, Barbosa DB (2009) The growing importance of materials that prevent microbial adhesion: antimicrobial effect of medical devices containing silver. Int J Antimicrob Agents 34(2):103–110

    Article  CAS  Google Scholar 

  • Otero V, Becerril R, Santos JA, Rodríguez-Calleja JM, Nerín C, García-López M-L (2014) Evaluation of two antimicrobial packaging films against Escherichia coli O157:H7 strains in vitro and during storage of a Spanish ripened sheep cheese (Zamorano). Food Control 42:296–302

    Article  CAS  Google Scholar 

  • Oule MK, Azinwi R, Bernier AM, Kablan T, Maupertuis AM, Mauler S, Nevry RK, Dembele K, Forbes L, Diop L (2008) Polyhexamethylene guanidine hydrochloride-based disinfectant: a novel tool to fight meticillin-resistant Staphylococcus aureus and nosocomial infections. J Med Microbiol 57(12):1523–1528

    Article  Google Scholar 

  • Pan Y, Xiao H, Cai P, Colpitts M (2016) Cellulose fibers modified with nano-sized antimicrobial polymer latex for pathogen deactivation. Carbohydr Polym 135:94–100

    Article  CAS  Google Scholar 

  • Pinto F, Maillard JY, Denyer SP, McGeechan P (2010) Polyhexamethylene biguanide exposure leads to viral aggregation. J Appl Microbiol 108(6):1880–1888

    CAS  Google Scholar 

  • Rodríguez A, Batlle R, Nerín C (2007) The use of natural essential oils as antimicrobial solutions in paper packaging. Part II. Prog Org Coat 60(1):33–38

    Article  Google Scholar 

  • Sun S, An Q, Li X, Qian L, He B, Xiao H (2010) Synergistic effects of chitosan-guanidine complexes on enhancing antimicrobial activity and wet-strength of paper. Bioresour Technol 101(14):5693–5700

    Article  CAS  Google Scholar 

  • Thakkar N, Pirrone V, Passic S, Zhu W, Kholodovych V, Welsh W, Rando RF, Labib ME, Wigdahl B, Krebs FC (2009) Specific interactions between the viral coreceptor CXCR4 and the biguanide-based compound NB325 mediate inhibition of human immunodeficiency virus type 1 infection. Antimicrob Agents Chemother 53(2):631–638

    Article  CAS  Google Scholar 

  • Thakkar N, Pirrone V, Passic S, Keogan S, Zhu W, Kholodovych V, Welsh W, Rando R, Labib M, Wigdahl B, Krebs FC (2010) Persistent interactions between biguanide-based compound NB325 and CXCR4 result in prolonged inhibition of human immunodeficiency virus type 1 infection. Antimicrob Agents Chemother 54(5):1965–1972

    Article  CAS  Google Scholar 

  • Wei D, Ma Q, Guan Y, Hu F, Zheng A, Zhang X, Teng Z, Jiang H (2009) Structural characterization and antibacterial activity of oligoguanidine (polyhexamethylene guanidine hydrochloride). Mater Sci Eng C Mater Biol Appl 29(6):1776–1780

    Article  CAS  Google Scholar 

  • Wei D, Chen Y, Zhang Y (2016a) Preparation of novel stable antibacterial nanoparticles using hydroxyethylcellulose and application in paper. Carbohydr Polym 136:543–550

    Article  CAS  Google Scholar 

  • Wei D, Ding Y, Wang T, Yang J, Guan Y, Zheng A (2016b) Preparation of nonleaching antimicrobial polypropylene wax and its application in polypropylene. J Appl Polym Sci 134(4):44190

    Google Scholar 

  • Wei D, Wang H, Ziaee Z, Chibante F, Zheng A, Xiao H (2016c) Non-leaching antimicrobial biodegradable PBAT films through a facile and novel approach. Mater Sci Eng C Mater Biol Appl 58:986–991

    Article  CAS  Google Scholar 

  • Xin XY, Huang GH, Sun W, Zhou Y, Fan YR (2016) Factorial two-stage irrigation system optimization model. J Irrig Drain Eng 142(2):04015056

    Article  Google Scholar 

  • Xue Y, Pan Y, Xiao H, Zhao Y (2014) Novel quaternary phosphonium-type cationic polyacrylamide and elucidation of dual-functional antibacterial/antiviral activity. RSC Adv 4(87):46887–46895

    Article  CAS  Google Scholar 

  • Zhang Y, Jiang J, Chen Y (1999) Synthesis and antimicrobial activity of polymeric guanidine and biguanidine salts. Polymer 40:6189–6198

    Article  CAS  Google Scholar 

  • Zhou Z, Wei D, Guan Y, Zheng A, Zhong JJ (2011) Extensive in vitro activity of guanidine hydrochloride polymer analogs against antibiotics-resistant clinically isolated strains. Mater Sci Eng C Mater Biol Appl 31(8):1836–1843

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the NSERC Canada and NSF China (Nos. 51379077 and 51573043) for funding this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huining Xiao or Yong Guan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, D., Li, Z., Wang, H. et al. Antimicrobial paper obtained by dip-coating with modified guanidine-based particle aqueous dispersion. Cellulose 24, 3901–3910 (2017). https://doi.org/10.1007/s10570-017-1386-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-017-1386-7

Keywords

Navigation