Skip to main content
Log in

Study of cellulosic fibres morphological features and their modifications using hemicelluloses

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The microfibrilar structure and the morphology of the fibre are some of the most important characteristics that determine fibre performance during yarn making. This article is focused on understanding of morphological features of manmade cellulosic fibre and exploring an alternate way to alter fibre morphology. It is observed that though the chemical nature of different types of cellulose fibres viz. viscose, modal and lyocell is same; different processing routes lead to different cross-section and morphologies of fibres which leads to their characteristic properties and spinning behavior. A novel way is attempted to alter the fibre morphology of viscose fibre by changing the fibre regeneration kinetics and molecular weight distribution through addition of low molecular weight and branched structured hemicelluloses in spinning dope. Addition of hemicelluloses in the spinning dope prior to spinning and regeneration of viscose fibres is found to alter the morphology of the fibres without affecting tensile properties of the fibres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Carrillo F, Colom X, Sunol J, Saurina J (2004) Structural FTIR analysis and thermal characterization of lyocell and viscose-type fibres. Eur Polym J 40:2229–2234

    Article  CAS  Google Scholar 

  • Colom X, Carrillo F (2002) Crystallinity changes in lyocell and viscose type fibres by caustic treatment. Eur Polym J 38:2225–2230

    Article  CAS  Google Scholar 

  • Fidelis MEA, Pereira TVC, Gomes ODFM, Filho RDT (2013) The effect of fiber morphology on the tensile strength of natural fibers. J Mater Res Technol 2:149–157

    Article  CAS  Google Scholar 

  • Fink HP, Weigel P, Purz HJ, Ganster J (2001) Structure formation of regenerated cellulose materials from NMMO solutions. Prog Polym Sci 26:1473–1524

    Article  CAS  Google Scholar 

  • Hermans PH, Weidinger A (1949) X-ray studies on the crystallinity of cellulose. J Polym Sci 4:135–144

    Article  CAS  Google Scholar 

  • Kadla JF, Gilbert RD (2000) Cellulose structure: a review. Cell Chem Technol 34:197–216

    CAS  Google Scholar 

  • Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Edit 44:3358–3393

    Article  CAS  Google Scholar 

  • Kreze T, Malej S (2003) Structural characteristics of new and conventional regenerated cellulose fibres. Text Res J 73:675–684

    Article  CAS  Google Scholar 

  • Lenz J, Schurz J, Wrentschur E (1988) The fibrillar structure of cellulosic man-made fibers spun from different solvent systems. J Appl Polym Sci 35:1987–2000

    Article  CAS  Google Scholar 

  • Li Z, Li Z, Ding R, Yu C (2016) Composition of ramie hemicelluloses and effect of polysaccharides on fiber properties. Text Res J 86:451–460

    Article  CAS  Google Scholar 

  • Mohanty AKM, Drzal LT, Selke SE, Harte BR, Hinrichsen G (2005) Natural fibers biopolymers and biocomposites. In: Mohanty AK, Misra M (eds) Natural fibers, biopolymers, and biocomposites. CRC Press, Florida, pp 1–36

    Chapter  Google Scholar 

  • Murugan R, Dasaradan BS (2008) Design and fabrication of crushing instrument to study influence of lateral deformation on fibrous assembly. Indian J Fibre Text Res 33:256–268

    Google Scholar 

  • Roder T, Johann M, Gerhard K, Sandra S, Gerhard Z, Herbert S (2009) Comparative characteristics of man-made regenerated cellulosic fibers. Lenzing Ber 87:98–105

    Google Scholar 

  • Roggenstein W (2011) Viscose fibres with new functional qualities. Lenzing Ber 89:72–77

    CAS  Google Scholar 

  • Schild G, Liftinger E (2014) Xylan enriched viscose fibers. Cellulose 21:3031–3039

    Article  CAS  Google Scholar 

  • Schurz J, Lenz J (1994) Investigations on the structure of regenerated cellulose fibers. Macromol Symp 83:273–289

    Article  CAS  Google Scholar 

  • Sinoimeri A (2009) Friction in textile fibers and its role fibre processing. Wear 267:1619–1624

    Article  CAS  Google Scholar 

  • Smole MS, Persin Z, Kreze T, Kleinschek KS, Ribitsch V, Neumayer S (2003) X-ray study of pre-treated regenerated cellulose fibres. Mater Res Innov 7:275–282

    Article  Google Scholar 

  • Spiridon I, Popa VI (2008) Hemicelluloses: major sources properties and applications. In: Belgacem MN, Gandini A (eds) Monomers, polymers and composites from renewable sources. Elsevier, Oxford, pp 289–304

    Chapter  Google Scholar 

  • Timell TE (1965) Wood hemicelluloses II. Adv Carbohydr Chem 20:409–483

    CAS  Google Scholar 

  • Viswanathan A (1965) Frictional forces in cotton and regenerated cellulosic fibres. J Text Inst Trans 57:T30–T41

    Article  Google Scholar 

  • Woodings C (2003) Cellulose fibers, regenerated. In: Mark HF, Kroschwitz JI (eds) Encyclopedia of polymer science and technology. Wiley, Michigan, pp 1–48

    Google Scholar 

Download references

Acknowledgments

One of the authors (Saurabh Singh) duly acknowledges the support from Pulp and Fibre Innovation Centre, Grasim Industries, Mumbai, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. V. P. Murthy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S.C., Murthy, Z.V.P. Study of cellulosic fibres morphological features and their modifications using hemicelluloses. Cellulose 24, 3119–3130 (2017). https://doi.org/10.1007/s10570-017-1353-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-017-1353-3

Keywords

Navigation