Skip to main content

Advertisement

Log in

Recent trends and developments in dissolving pulp production and application

  • Review Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

This work provides a critical overview of the recent trends toward the development of modern, dissolving pulp production technologies that respond to the current challenges and opportunities for the emerging low-carbon bioresource economy. Special attention is paid to recent advancements in prehydrolysis kraft pulping and conversion of paper grade pulp to dissolving pulp, with emphasis on the valorization of hemicellulose to value-added products. A comprehensive analysis of the current and future developmental opportunities for novel bioprocessing technologies and new products from dissolving pulp that aim to improve the process economics and enhance the industry competitiveness is presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abu-Rous M, Varga K, Bechtold T, Schuster KC (2007) A new method to visualize and characterize the pore structure of TENCEL® (Lyocell) and other man-made cellulosic fibres using a fluorescent dye molecular probe. J Appl Polym Sci 106:2083–2091. doi:10.1002/app.26722

    Article  CAS  Google Scholar 

  • Aghcheh RK, Bonakdarpour B, Ashtiani FZ (2016) The influence of sugar cane bagasse type and its particle size on xylose production and xylose-to-xylitol bioconversion with the yeast Debaryomyces hansenii. Appl Biochem Biotechnol 180:1141–1151. doi:10.1007/s12010-016-2157-x

    Article  CAS  Google Scholar 

  • Alén R (2011a) Cellulose derivatives. In: Alén R (ed) Biorefining of forest resources. Paper Engineers’ Association, Helsinki, pp 306–354

    Google Scholar 

  • Alén R (2011b) Principles of biorefining. In: Alén R (ed) Biorefining of forest resources. Paper Engineers’ Association, Helsinki, pp 56–114

    Google Scholar 

  • Alén R (2011c) Structure and chemical composition of biomass feedstocks. In: Alén R (ed) Biorefining of forest resources. Paper Engineers’ Association, Helsinki, pp 18–54

    Google Scholar 

  • Ambjörnsson HA, Östberg L, Schenzel K, Larsson PT, Germgård U (2014) Enzyme pretreatment of dissolving pulp as a way to improve the following dissolution in NaOH/ZnO. Holzforschung 68:385–391. doi:10.1515/hf-2013-0070

    Article  CAS  Google Scholar 

  • Arnoul-Jarriault B, Lachenal D, Chirat C, Heux L (2015) Upgrading softwood bleached kraft pulp to dissolving pulp by cold caustic treatment and acid-hot caustic treatment. Ind Crops Prod 65:565–571. doi:10.1016/j.indcrop.2014.09.051

    Article  CAS  Google Scholar 

  • Arora A, Padua G (2010) Review: nanocomposites in food packaging. J Food Sci 75:R43–R49. doi:10.1111/j.1750-3841.2009.01456.x

    Article  CAS  Google Scholar 

  • Azizi Samir MAS, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromol 6:612–626. doi:10.1021/bm0493685

    Article  CAS  Google Scholar 

  • Bajpai P, Bajpait PK (2001) Development of a process for the production of dissolving kraft pulp using xylanase enzyme. Appita J 54:381–384

    CAS  Google Scholar 

  • Baktash MM, Ahsan L, Ni Y (2015) Production of furfural from an industrial pre-hydrolysis liquor. Sep Purif Technol 149:407–412. doi:10.1016/j.seppur.2015.06.003

    Article  CAS  Google Scholar 

  • Balser K, Hoppe L, Eicher T, Wandel M, Astheimer H-J, Steinmeier H, Allen JM (2004) Cellulose esters. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, pp 333–380. doi:10.1002/14356007.a05_419.pub2

  • Battista OA, Smith PA (1962) Microcrystalline cellulose I. Ind Eng Chem 54:20–29. doi:10.1021/ie50633a003

    Article  CAS  Google Scholar 

  • Behin J, Zeyghami M (2009) Dissolving pulp from corn stalk residue and waste water of Merox unit. Chem Eng J 152:26–35. doi:10.1016/j.cej.2009.03.024

    Article  CAS  Google Scholar 

  • Behin J, Mikaniki F, Fadaei Z (2008) Dissolving pulp (alpha-cellulose) from corn stalk by kraft process. Iran J Chem Eng 5:15

    Google Scholar 

  • Beker Ü, Güner F, Dizman M, Erciyes A (1999) Heavy metal removal by ion exchanger based on hydroxyethyl cellulose. J Appl Polym Sci 74:3501–3506

    Article  CAS  Google Scholar 

  • Berman B (2012) 3-D printing: the new industrial revolution. Bus Horiz 55:155–162. doi:10.1016/j.bushor.2011.11.003

    Article  Google Scholar 

  • Beyaz K, Charton M, Rouilly A, Vedrenne E, Vaca-Garcia C, Benaboura A, Thiebaud-Roux S (2017) Synthesis of graft-copolymers from palm cellulose and solketal acrylate and their characterization. Ind Crops Prod 97:32–40. doi:10.1016/j.indcrop.2016.12.001

    Article  CAS  Google Scholar 

  • Bhaumik P, Dhepe PL (2013) Efficient, stable, and reusable silicoaluminophosphate for the one-pot production of furfural from hemicellulose. ACS Catal 3:2299–2303. doi:10.1021/cs400495j

    Article  CAS  Google Scholar 

  • Bian J, Peng F, Peng XP, Xiao X, Peng P, Xu F, Sun RC (2014) Effect of [Emim] Ac pretreatment on the structure and enzymatic hydrolysis of sugarcane bagasse cellulose. Carbohydr Polym 100:211–217. doi:10.1016/j.carbpol.2013.02.059

    Article  CAS  Google Scholar 

  • Bondeson D, Mathew A, Oksman K (2006) Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose 13:171. doi:10.1007/s10570-006-9061-4

    Article  CAS  Google Scholar 

  • Brinchi L, Cotana F, Fortunati E, Kenny J (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydr Polym 94:154–169. doi:10.1016/j.carbpol.2013.01.033

    Article  CAS  Google Scholar 

  • Burger J, Kettenbach G, Klüfers P (1995) Coordination equilibria in transition metal based cellulose solvents. Macromol Symp 99:113–126. doi:10.1002/masy.19950990113

    Article  CAS  Google Scholar 

  • Chen X, Burger C, Fang D, Ruan D, Zhang L, Hsiao BS, Chu B (2006) X-ray studies of regenerated cellulose fibers wet spun from cotton linter pulp in NaOH/thiourea aqueous solutions. Polymer 47:2839–2848. doi:10.1016/j.polymer.2006.02.044

    Article  CAS  Google Scholar 

  • Chen C, Duan C, Li J, Liu Y, Ma X, Zheng L, Stavik J, Ni Y (2016) Cellulose (dissolving pulp) manufacturing processes and properties: a mini-review. Bioresour 11:5553–5564

    Google Scholar 

  • Cheng Z, Yang R, Liu X, Liu X, Chen H (2017a) Green synthesis of bacterial cellulose via acetic acid pre-hydrolysis liquor of agricultural corn stalk used as carbon source. Bioresour Technol 234:8–14. doi:10.1016/j.biortech.2017.02.131

    Article  CAS  Google Scholar 

  • Cheng M, Qin Z, Hu S, Yu H, Zhu M (2017b) Use of electrospinning to directly fabricate three-dimensional nanofiber stacks of cellulose acetate under high relative humidity condition. Cellulose 24:219–229. doi:10.1007/s10570-016-1099-3

    Article  CAS  Google Scholar 

  • Cho S-W, Skrifvars M, Hemanathan K, Mahimaisenan P, Adekunle K (2014) Regenerated cellulose fibre reinforced casein films: effect of plasticizer and fibres on the film properties. Macromol Res 22:701–709. doi:10.1007/s13233-014-2091-0

    Article  CAS  Google Scholar 

  • Christopher L (2012) Adding value prior to pulping: bioproducts from hemicellulose. In: Okia CA (ed) Global perspectives on sustainable forest management. InTech, Rijeka, pp 225–246

    Google Scholar 

  • Christopher L (2013) Integrated forest biorefineries: current state and development potential. In: Christopher L (ed) Integrated forest biorefineries: challenges and opportunities. Royal Society of Chemistry, Cambridge, pp 1–66

    Google Scholar 

  • Christov LP, Prior BA (1993) Xylan removal from dissolving pulp using enzymes of Aureobasidium pullulans. Biotechnol Lett 15:1269–1274. doi:10.1007/bf00130310

    Article  CAS  Google Scholar 

  • Christov L, Prior B (1996) Repeated treatments with Aureobasidium pullulans hemicellulases and alkali enhance biobleaching of sulphite pulps. Enzyme Microb Technol 18:244–250. doi:10.1016/0141-0229(95)00058-5

    Article  CAS  Google Scholar 

  • Dalli SS, da Silva SS, Uprety BK, Rakshit SK (2017) Enhanced production of xylitol from poplar wood hydrolysates through a sustainable process using immobilized new strain Candida tropicalis UFMG BX 12-a. Appl Biochem Biotechnol. doi:10.1007/s12010-016-2381-4

    Google Scholar 

  • Demitri C et al (2008) Novel superabsorbent cellulose-based hydrogels crosslinked with citric acid. J Appl Polym Sci 110:2453–2460. doi:10.1002/app.28660

    Article  CAS  Google Scholar 

  • Deng A, Lin Q, Yan Y, Li H, Ren J, Liu C, Sun R (2016) A feasible process for furfural production from the pre-hydrolysis liquor of corncob via biochar catalysts in a new biphasic system. Bioresour Technol 216:754–760. doi:10.1016/j.biortech.2016.06.002

    Article  CAS  Google Scholar 

  • Deshpande R (2016). The initial phase of sodium sulfite pulping of softwood: a comparison of different pulping options, Doctoral Thesis, Karlstad University, Karlstad, Sweden

  • Duan C, Verma SK, Li J, Ma X, Ni Y (2016a) Combination of mechanical, alkaline and enzymatic treatments to upgrade paper-grade pulp to dissolving pulp with high reactivity. Bioresour Technol 200:458–463. doi:10.1016/j.biortech.2015.10.067

    Article  CAS  Google Scholar 

  • Duan C, Verma SK, Li J, Ma X, Ni Y (2016b) Viscosity control and reactivity improvements of cellulose fibers by cellulase treatment. Cellulose 23:269–276. doi:10.1007/s10570-015-0822-9

    Article  CAS  Google Scholar 

  • Duan C, Wang X, Zhang Y, Xu Y, Ni Y (2017) Fractionation and cellulase treatment for enhancing the properties of kraft-based dissolving pulp. Bioresour Technol 224:439–444. doi:10.1016/j.biortech.2016.10.077

    Article  CAS  Google Scholar 

  • Edgar KJ, Buchanan CM, Debenham JS, Rundquist PA, Seiler BD, Shelton MC, Tindall D (2001) Advances in cellulose ester performance and application. Prog Polym Sci 26:1605–1688. doi:10.1016/S0079-6700(01)00027-2

    Article  CAS  Google Scholar 

  • Eichhorn S et al (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45:1–33. doi:10.1007/s10853-009-3874-0

    Article  CAS  Google Scholar 

  • Engström A-C, Ek M, Henriksson G (2006) Improved accessibility and reactivity of dissolving pulp for the viscose process: pretreatment with monocomponent endoglucanase. Biomacromol 7:2027–2031. doi:10.1021/bm0509725

    Article  CAS  Google Scholar 

  • Evtuguin DV, Neto P (2007) Recent advances in eucalyptus wood chemistry: structural features through the prism of technological response. In: 3th International colloquium on eucalyptus pulp. Belo Horizonte, Brasil

  • Fatehi P, Catalan L, Cave G (2014) Simulation analysis of producing xylitol from hemicelluloses of pre-hydrolysis liquor. Chem Eng Res Des 92:1563–1570. doi:10.1016/j.cherd.2014.03.010

    Article  CAS  Google Scholar 

  • Ferrari MD, Neirotti E, Albornoz C, Saucedo E (1992) Ethanol production from eucalyptus wood hemicellulose hydrolysate by Pichia stipitis. Biotechnol Bioeng 40:753–759. doi:10.1002/bit.260400702

    Article  CAS  Google Scholar 

  • Ferrer A, Pal L, Hubbe M (2017) Nanocellulose in packaging: advances in barrier layer technologies. Ind Crops Prod 95:574–582. doi:10.1016/j.indcrop.2016.11.012

    Article  CAS  Google Scholar 

  • Frone AN, Panaitescu DM, Donescu D (2011) Some aspects concerning the isolation of cellulose micro-and nano-fibers. UPB Bull Stiintific Ser B Chem Mater Sci 73:133–152

    CAS  Google Scholar 

  • Froschauer C, Hummel M, Iakovlev M, Roselli A, Schottenberger H, Sixta H (2013) Separation of hemicellulose and cellulose from wood pulp by means of ionic liquid/cosolvent systems. Biomacromol 14:1741–1750. doi:10.1021/bm400106h

    Article  CAS  Google Scholar 

  • Gehmayr V, Schild G, Sixta H (2011) A precise study on the feasibility of enzyme treatments of a kraft pulp for viscose application. Cellulose 18:479–491. doi:10.1007/s10570-010-9483-x

    Article  CAS  Google Scholar 

  • Ghindea R, Csutak O, Stoica I, Tanase A-M, Vassu T (2010) Production of xylitol by yeasts. Romanian Biotechnol Lett 15:5217–5222

    CAS  Google Scholar 

  • Gírio F, Fonseca C, Carvalheiro F, Duarte L, Marques S, Bogel-Łukasik R (2010) Hemicelluloses for fuel ethanol: a review. Bioresour Technol 101:4775–4800. doi:10.1016/j.biortech.2010.01.088

    Article  CAS  Google Scholar 

  • Grethlein HE, Converse AO (1991) Common aspects of acid prehydrolysis and steam explosion for pretreating wood. Bioresour Technol 36:77–82. doi:10.1016/0960-8524(91)90101-O

    Article  CAS  Google Scholar 

  • Gross BC, Erkal JL, Lockwood SY, Chen C, Spence DM (2014) Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences. Anal Chem 86:3240–3253. doi:10.1021/ac403397r

    Article  CAS  Google Scholar 

  • Güçlü G, Gürdağ G, Özgümüş S (2003) Competitive removal of heavy metal ions by cellulose graft copolymers. J Appl Polym Sci 90:2034–2039

    Article  CAS  Google Scholar 

  • Gunasekera DH, Kuek S, Hasanaj D, He Y, Tuck C, Croft AK, Wildman RD (2016) Three dimensional ink-jet printing of biomaterials using ionic liquids and co-solvents. Faraday Discuss 190:509–523. doi:10.1039/C5FD00219B

    Article  CAS  Google Scholar 

  • Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500. doi:10.1021/cr900339w

    Article  CAS  Google Scholar 

  • Hashem M, Hauser P, Smith B (2003) Wrinkle recovery for cellulosic fabric by means of ionic crosslinking. Text Res J 73:762–766. doi:10.1177/004051750307300903

    Article  CAS  Google Scholar 

  • Hauru LK et al (2013) Enhancement of ionic liquid-aided fractionation of birchwood. Part 1: autohydrolysis pretreatment. RSC Adv 3:16365–16373. doi:10.1039/C3RA41529E

    Article  CAS  Google Scholar 

  • Henriksson G, Christiernin M, Agnemo R (2005) Monocomponent endoglucanase treatment increases the reactivity of softwood sulphite dissolving pulp. J Ind Microbiol Biotechnol 32:211–214. doi:10.1007/s10295-005-0220-7

    Article  CAS  Google Scholar 

  • Hu L, Liu N, Eskilsson M, Zheng G, McDonough J, Wågberg L, Cui Y (2013) Silicon-conductive nanopaper for Li-ion batteries. Nano Energy 2:138–145. doi:10.1016/j.nanoen.2012.08.008

    Article  CAS  Google Scholar 

  • Hubbe MA, Rojas OJ, Lucia LA, Sain M (2008) Cellulosic nanocomposites: a review. Bioresour 3:929–980

    Google Scholar 

  • Ibarra D, Köpcke V, Ek M (2009) Exploring enzymatic treatments for the production of dissolving grade pulp from different wood and non-wood paper grade pulps 10th EWLP, Stockholm, Sweden, August 25–28, 2008. Holzforschung 63:721–730. doi:10.1515/HF.2009.102

    Article  CAS  Google Scholar 

  • Ibarra D, Köpcke V, Larsson PT, Jääskeläinen A-S, Ek M (2010) Combination of alkaline and enzymatic treatments as a process for upgrading sisal paper-grade pulp to dissolving-grade pulp. Bioresour Technol 101:7416–7423. doi:10.1016/j.biortech.2010.04.050

    Article  CAS  Google Scholar 

  • Iwamoto S, Nakagaito AN, Yano H, Nogi M (2005) Optically transparent composites reinforced with plant fiber-based nanofibers. Appl Phys A 81:1109–1112. doi:10.1007/s00339-005-3316-z

    Article  CAS  Google Scholar 

  • Jackson LS, Heitmann J, Joyce TW (1998) Production of dissolving pulp from recovered paper using enzymes. Tappi J 81:171–178

    CAS  Google Scholar 

  • Jahan MS, Ahsan L, Noori A, Quaiyyum M (2008) Process for the production of dissolving pulp from trema orientalis (Nalita) by prehydrolysis kraft and soda-ethylenediamine (EDA) process. Bioresour 3:816–828

    Google Scholar 

  • Jahan MS, Liu Z, Wang H, Saeed A, Ni Y (2012) Isolation and characterization of lignin from prehydrolysis liquor of kraft-based dissolving pulp production. Cellul Chem Technol 46:261–267

    CAS  Google Scholar 

  • Janzon R, Puls J, Saake B (2006) Upgrading of paper-grade pulps to dissolving pulps by nitren extraction: optimisation of extraction parameters and application to different pulps. Holzforschung 60:347–354. doi:10.1515/HF.2006.055

    Article  CAS  Google Scholar 

  • Janzon R, Saake B, Puls J (2008) Upgrading of paper-grade pulps to dissolving pulps by nitren extraction: properties of nitren extracted xylans in comparison to NaOH and KOH extracted xylans. Cellulose 15:161–175. doi:10.1007/s10570-007-9154-8

    Article  CAS  Google Scholar 

  • Kaur I, Ni Y (2015) A process to produce furfural and acetic acid from pre-hydrolysis liquor of kraft based dissolving pulp process. Sep Purif Technol 146:121–126. doi:10.1016/j.seppur.2015.03.034

    Article  CAS  Google Scholar 

  • Kaur P, Bhardwaj NK, Sharma J (2016) Pretreatment with xylanase and its significance in hemicellulose removal from mixed hardwood kraft pulp as a process step for viscose. Carbohydr Polym 145:95–102. doi:10.1016/j.carbpol.2016.03.023

    Article  CAS  Google Scholar 

  • Khazraie T, Zhang Y, Tarasov D, Gao W, Price J, DeMartini N, Hupa L, Fatehi P (2017) A process for producing lignin and volatile compounds from hydrolysis liquor. Biotechnol Biofuels 10:47. doi:10.1186/s13068-017-0729-9

    Article  Google Scholar 

  • Kiziltas A, Erbas Kiziltas E, Boran S, Gardner DJ (2013) Micro-and nanocellulose composites for automotive applications. In: Proceedings of SPE automotive composites conference and exhibition (ACCE), pp 11–13

  • Konwarh R, Karak N, Misra M (2013) Electrospun cellulose acetate nanofibers: the present status and gamut of biotechnological applications. Biotechnol Adv 31:421–437. doi:10.1016/j.biotechadv.2013.01.002

    Article  CAS  Google Scholar 

  • Köpcke V (2010) Conversion of wood and non-wood paper-grade pulps to dissolving-grade pulps. Doctoral Thesis, KTH Royal Institute of Technology, Stockholm, Sweden

  • Köpcke V, Ibarra D, Ek M (2008) Increasing accessibility and reactivity of paper grade pulp by enzymatic treatment for use as dissolving pulp. Nord Pulp Pap Res J 23:363–368. doi:10.3183/NPPRJ-2008-23-04-p363-368

    Article  Google Scholar 

  • Köpcke V, Ibarra D, Larsson PT, Ek M (2010) Optimization of treatment sequences for the production of dissolving pulp from birch kraft pulp. Nord Pulp Pap Res J 25:31–38. doi:10.3183/NPPRJ-2010-25-01-p031-038

    Article  Google Scholar 

  • Kowhakul W, Shibahara H, Masamoto H, Shigematsu M (2016) Dust explosion characteristics of cellulose ethers and cellulose acetates with various degrees of acetylation. J Loss Prev Process Ind 44:544–550. doi:10.1016/j.jlp.2016.07.018

    Article  CAS  Google Scholar 

  • Krässig HA (1993) Cellulose: structure, accessibility and reactivity. Gordon and Breach Science, Philadelphia

    Google Scholar 

  • Kvarnlöf N, Germgård U, Jönsson LJ, Söderlund C-A (2007) Optimization of the enzymatic activation of a dissolving pulp before viscose manufacture. Tappi J 6:14–19

    Google Scholar 

  • Li J, Liu Y, Duan C, Zhang H, Ni Y (2015) Mechanical pretreatment improving hemicelluloses removal from cellulosic fibers during cold caustic extraction. Bioresour Technol 192:501–506. doi:10.1016/j.biortech.2015.06.011

    Article  CAS  Google Scholar 

  • Lin N, Dufresne A (2014) Nanocellulose in biomedicine: current status and future prospect. Eur Polym J 59:302–325. doi:10.1016/j.eurpolymj.2014.07.025

    Article  CAS  Google Scholar 

  • Lin Q, Gao M, Chang J, Ma H (2017) Highly effective adsorption performance of carboxymethyl cellulose microspheres crosslinked with epichlorohydrin. J Appl Polym Sci 134:1–11. doi:10.1002/app.44363

    Google Scholar 

  • Liu S, Edgar KJ (2017) Water-soluble co-polyelectrolytes by selective modification of cellulose esters. Carbohydr Polym 162:1–9. doi:10.1016/j.carbpol.2017.01.008

    Article  CAS  Google Scholar 

  • Liu Z, Fatehi P, Sadeghi S, Ni Y (2011a) Application of hemicelluloses precipitated via ethanol treatment of pre-hydrolysis liquor in high-yield pulp. Bioresour Technol 102:9613–9618

    Article  CAS  Google Scholar 

  • Liu Z, Ni Y, Fatehi P, Saeed A (2011b) Isolation and cationization of hemicelluloses from pre-hydrolysis liquor of kraft-based dissolving pulp production process. Biomass Bioenergy 35:1789–1796. doi:10.1016/j.biombioe.2011.01.008

    Article  CAS  Google Scholar 

  • Liu X, Fatehi P, Ni Y (2012) Removal of inhibitors from pre-hydrolysis liquor of kraft-based dissolving pulp production process using adsorption and flocculation processes. Bioresour Technol 116:492–496. doi:10.1016/j.biortech.2012.03.069

    Article  CAS  Google Scholar 

  • Liu H, Hu H, Jahan MS, Ni Y (2015) Improvement of furfural production from concentrated prehydrolysis liquor (PHL) of a kraft-based hardwood dissolving pulp production process. J Wood Chem Technol 35:260–269. doi:10.1080/02773813.2014.945217

    Article  CAS  Google Scholar 

  • Lu Y, Weng L, Cao X (2006) Morphological, thermal and mechanical properties of ramie crystallites—reinforced plasticized starch biocomposites. Carbohydr Polym 63:198–204. doi:10.1016/j.carbpol.2005.08.027

    Article  CAS  Google Scholar 

  • Lundberg V, Bood J, Nilsson L, Axelsson E, Berntsson T, Svensson E (2014) Converting a kraft pulp mill into a multi-product biorefinery: techno-economic analysis of a case mill. Clean Technol Environ 16:1411–1422. doi:10.1007/s10098-014-0741-8

    Article  CAS  Google Scholar 

  • Luo X, Liu J, Wang H, Huang L, Chen L (2014) Comparison of hot-water extraction and steam treatment for production of high purity-grade dissolving pulp from green bamboo. Cellulose 21:1445–1457. doi:10.1007/s10570-014-0234-2

    Article  CAS  Google Scholar 

  • Machado G, Leon S, Santos F, Lourega R, Dullius J, Mollmann ME, Eichler P (2016) Literature review on furfural production from lignocellulosic biomass. Nat Resour 7:115–129. doi:10.4236/nr.2016.73012

    Google Scholar 

  • Mahfoudhi N, Boufi S (2017) Nanocellulose as a novel nanostructured adsorbent for environmental remediation: a review. Cellulose 24:1171–1197. doi:10.1007/s10570-017-1194-0

    Article  CAS  Google Scholar 

  • Majewicz TG, Erazo-Majewicz PE, Podlas TJ (2004) Cellulose ethers. In: Mark HF (ed) Encyclopedia of polymer science and technology. Wiley, New York, pp 503–531. doi:10.1002/0471440264.pst044

  • Mäki-Arvela P, Salmi T, Holmbom B, Willför S, Murzin DY (2011) Synthesis of sugars by hydrolysis of hemicelluloses—a review. Chem Rev 111:5638–5666. doi:10.1021/cr2000042

    Article  CAS  Google Scholar 

  • Mamman AS et al (2008) Furfural: hemicellulose/xylosederived biochemical. Biofuels, Bioprod Biorefin 2:438–454. doi:10.1002/bbb.95

    Article  CAS  Google Scholar 

  • Maréchal A (1993) Acid extraction of the alkaline wood pulps (kraft or soda/AQ) before or during bleaching reason and opportunity. J Wood Chem Technol 13:261–281. doi:10.1080/02773819308020517

    Article  Google Scholar 

  • Marinova M, Mateos-Espejel E, Jemaa N, Paris J (2009) Addressing the increased energy demand of a kraft mill biorefinery: the hemicellulose extraction case. Chem Eng Res Des 87:1269–1275. doi:10.1016/j.cherd.2009.04.017

    Article  CAS  Google Scholar 

  • Marinova M, Mateos-Espejel E, Paris J (2010) From kraft mills to forest biorefinery: an energy and water perspective II. Case study. Cell Chem Technol 44:21

    CAS  Google Scholar 

  • Markstedt K, Sundberg J, Gatenholm P (2014) 3D bioprinting of cellulose structures from an ionic liquid. 3D Print Addit Manuf 1:115–121. doi:10.1089/3dp.2014.0004

    Article  Google Scholar 

  • Mateos-Espejel E, Radiotis T, Jemaa N (2013) Implications of converting a kraft pulp mill to a dissolving pulp operation with a hemicellulose extraction stage. Tappi J 12:29–38

    CAS  Google Scholar 

  • Matin M, Rahaman MM, Nayeem J, Sarkar M, Jahan MS (2015) Dissolving pulp from jute stick. Carbohydr Polym 115:44–48. doi:10.1016/j.carbpol.2014.08.090

    Article  CAS  Google Scholar 

  • Mendes C, Carvalho M, Baptista C, Rocha J, Soares B, Sousa G (2009) Valorisation of hardwood hemicelluloses in the kraft pulping process by using an integrated biorefinery concept. Food Bioprod Process 87:197–207. doi:10.1016/j.fbp.2009.06.004

    Article  CAS  Google Scholar 

  • Miao Q, Chen L, Huang L, Tian C, Zheng L, Ni Y (2014) A process for enhancing the accessibility and reactivity of hardwood kraft-based dissolving pulp for viscose rayon production by cellulase treatment. Bioresour Technol 154:109–113. doi:10.1016/j.biortech.2013.12.040

    Article  CAS  Google Scholar 

  • Mohamad NL, Kamal SMM, Mokhtar MN, Husain SA, Abdullah N (2016) Dynamic mathematical modelling of reaction kinetics for xylitol fermentation using Candida tropicalis. Biochem Eng J 111:10–17. doi:10.1016/j.bej.2016.02.017

    Article  CAS  Google Scholar 

  • Nakamura A, Miyafuji H, Saka S, Mori M, Takahashi H (2010) Recovery of cellulose and xylan liquefied in ionic liquids by precipitation in anti-solvents. Holzforschung 64:77–79. doi:10.1515/hf.2010.004

    CAS  Google Scholar 

  • Nichols N, Dien B, Bothast R (2001) Use of catabolite repression mutants for fermentation of sugar mixtures to ethanol. Appl Microbiol Biotechnol 56:120–125. doi:10.1007/s002530100628

    Article  CAS  Google Scholar 

  • Nigam J (2001) Development of xylose fermenting yeast Pichia stipitis for ethanol production through adaptation on hardwood hemicellulose acid prehydrolysate. J Appl Microbiol 90:208–215

    Article  CAS  Google Scholar 

  • Nishino T, Matsuda I, Hirao K (2004) All-cellulose composite. Macromolecules 37:7683–7687. doi:10.1021/ma049300h

    Article  CAS  Google Scholar 

  • Okahisa Y, Yoshida A, Miyaguchi S, Yano H (2009) Optically transparent wood–cellulose nanocomposite as a base substrate for flexible organic light-emitting diode displays. Compos Sci Technol 69:1958–1961. doi:10.1016/j.compscitech.2009.04.017

    Article  CAS  Google Scholar 

  • Oksman K, Aitomäki Y, Mathew AP, Siqueira G, Zhou Q, Butylina S, Tanpichai S, Zhou X, Hooshmand S (2016) Review of the recent developments in cellulose nanocomposite processing. Compos Part A Appl Sci Manuf 83:2–18. doi:10.1016/j.compositesa.2015.10.041

    Article  CAS  Google Scholar 

  • Patt R, Kordsachia O, Fehr J (2006) European hardwoods versus Eucalyptus globulus as a raw material for pulping. Wood Sci Technol 40:39–48. doi:10.1007/s00226-005-0042-9

    Article  CAS  Google Scholar 

  • Pattinson SW, Hart AJ (2017) Additive manufacturing of cellulosic materials with robust mechanics and antimicrobial functionality. Adv Mater Technol. doi:10.1002/admt.201600084

    Google Scholar 

  • Pérez-Bibbins B, Torrado-Agrasar A, Salgado JM, Mussatto SI, Domínguez JM (2016) Xylitol production in immobilized cultures: a recent review. Crit Rev Biotechnol 36:691–704. doi:10.1002/admt.201600084

    Google Scholar 

  • Peters S, Rushing T, Landis E, Cummins T (2010) Nanocellulose and microcellulose fibers for concrete. Transp Res Rec J Transp Res Board. doi:10.3141/2142-04

    Google Scholar 

  • Puls J, Janzon R, Saake B (2006) Comparative removal of hemicelluloses from paper pulps using nitren, cuen, NaOH, and KOH. Lenzinger Berichte 86:63–70

    CAS  Google Scholar 

  • Quintana E, Valls C, Barneto AG, Vidal T, Ariza J, Roncero MB (2015) Studying the effects of laccase treatment in a softwood dissolving pulp: cellulose reactivity and crystallinity. Carbohydr Polym 119:53–61. doi:10.1016/j.carbpol.2014.11.019

    Article  CAS  Google Scholar 

  • Rabinovich ML, Melnick MS, Bolobova AV (2002) The structure and mechanism of action of cellulolytic enzymes. Biochem Mosc 67:850–871. doi:10.1023/a:1019958419032

    Article  CAS  Google Scholar 

  • Rengier F, Mehndiratta A, von Tengg-Kobligk H, Zechmann CM, Unterhinninghofen R, Kauczor H-U, Giesel FL (2010) 3D printing based on imaging data: review of medical applications. Int J Comput Assist Radiol Surg 5:335–341. doi:10.1007/s11548-010-0476-x

    Article  CAS  Google Scholar 

  • Roselli A, Hummel M, Monshizadeh A, Maloney T, Sixta H (2014) Ionic liquid extraction method for upgrading eucalyptus kraft pulp to high purity dissolving pulp. Cellulose 21:3655–3666. doi:10.1007/s10570-014-0344-x

    Article  CAS  Google Scholar 

  • Roselli A, Hummel M, Vartiainen J, Nieminen K, Sixta H (2017) Understanding the role of water in the interaction of ionic liquids with wood polymers. Carbohydr Polym. doi:10.1016/j.carbpol.2017.03.013

    Google Scholar 

  • Roy D, Knapp JS, Guthrie JT, Perrier S (2008) Antibacterial cellulose fiber via RAFT surface graft polymerization. Biomacromol 9:91–99. doi:10.1021/bm700849j

    Article  CAS  Google Scholar 

  • Roy D, Semsarilar M, Guthrie JT, Perrier S (2009) Cellulose modification by polymer grafting: a review. Chem Soc Rev 38:2046–2064. doi:10.1039/B808639G

    Article  CAS  Google Scholar 

  • Saalwächter K, Burchard W, Klüfers P, Kettenbach G, Mayer P, Klemm D, Dugarmaa S (2000) Cellulose solutions in water containing metal complexes. Macromolecules 33:4094–4107. doi:10.1021/ma991893m

    Article  CAS  Google Scholar 

  • Saba N, Mohammad F, Pervaiz M, Jawaid M, Alothman OY, Sain M (2017) Mechanical, morphological and structural properties of cellulose nanofibers reinforced epoxy composites. Int J Biol Macromol 97:190–200. doi:10.1016/j.ijbiomac.2017.01.029

    Article  CAS  Google Scholar 

  • Saeed A, Jahan MS, Li H, Liu Z, Ni Y, van Heiningen A (2012) Mass balances of components dissolved in the pre-hydrolysis liquor of kraft-based dissolving pulp production process from Canadian hardwoods. Biomass Bioenerg 39:14–19. doi:10.1016/j.biombioe.2010.08.039

    Article  CAS  Google Scholar 

  • Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30:279–291. doi:10.1007/s10295-003-0049-x

    Article  CAS  Google Scholar 

  • Sannino A, Pappada S, Madaghiele M, Maffezzoli A, Ambrosio L, Nicolais L (2005) Crosslinking of cellulose derivatives and hyaluronic acid with water-soluble carbodiimide. Polymer 46:11206–11212. doi:10.1016/j.polymer.2005.10.048

    Article  CAS  Google Scholar 

  • Serra T, Ortiz-Hernandez M, Engel E, Planell JA, Navarro M (2014) Relevance of PEG in PLA-based blends for tissue engineering 3D-printed scaffolds. Mater Sci Eng, C 38:55–62. doi:10.1016/j.msec.2014.01.003

    Article  CAS  Google Scholar 

  • Shen J, Fatehi P, Soleimani P, Ni Y (2011) Recovery of lignocelluloses from pre-hydrolysis liquor in the lime kiln of kraft-based dissolving pulp production process by adsorption to lime mud. Bioresour Technol 102:10035–10039. doi:10.1016/j.biortech.2011.08.058

    Article  CAS  Google Scholar 

  • Shen J, Kaur I, Baktash MM, He Z, Ni Y (2013) A combined process of activated carbon adsorption, ion exchange resin treatment and membrane concentration for recovery of dissolved organics in pre-hydrolysis liquor of the kraft-based dissolving pulp production process. Bioresour Technol 127:59–65. doi:10.1016/j.biortech.2012.10.031

    Article  CAS  Google Scholar 

  • Shen J, Singh R, Konduri M, Fatehi P (2015) Cationic hemicellulose as a product of dissolving pulp based biorefinery. Ind Eng Chem Res 54:1426–1432. doi:10.1021/ie504363j

    Article  CAS  Google Scholar 

  • Shi H, Fatehi P, Xiao H, Ni Y (2011) A combined acidification/PEO flocculation process to improve the lignin removal from the pre-hydrolysis liquor of kraft-based dissolving pulp production process. Bioresour Technol 102:5177–5182. doi:10.1016/j.biortech.2011.01.073

    Article  CAS  Google Scholar 

  • Shivakumar M, Nagashree KL, Yallappa S, Manjappa S, Manjunath KS, Dharmaprakash MS (2017) Biosynthesis of silver nanoparticles using pre-hydrolysis liquor of Eucalyptus wood and its effective antimicrobial activity. Enzyme Microb Technol 97:55–62. doi:10.1016/j.enzmictec.2016.11.006

    Article  CAS  Google Scholar 

  • Shokri J, Adibkia K (2013) Application of cellulose and cellulose derivatives in pharmaceutical industries. In: Ven Tvd, Godbout L (eds) Cellulose—medical, pharmaceutical and electronic applications. InTech, pp 47–66. doi:10.5772/55178

  • Sixta H (2006) Pulp properties and applications. In: Sixta H (ed) Handbook of pulp. Wiley-VCH, Weinheim, pp 1009–1067

    Chapter  Google Scholar 

  • Sixta H, Potthast A, Krotschek AW (2006) Chemical pulping processes. In: Sixta H (ed) Handbook of pulp. Wiley-VCH, Weinheim, pp 325–366

    Chapter  Google Scholar 

  • Sixta H et al (2013) Novel concepts of dissolving pulp production. Cellulose 20:1547–1561. doi:10.1007/s10570-013-9943-1

    Article  CAS  Google Scholar 

  • Sjöström E (1993) Wood pulping. In: Sjöström E (ed) Wood chemistry, 2nd edn. Academic Press, San Diego, pp 114–164. doi:10.1016/B978-0-08-092589-9.50011-5

  • Sobue H, Kiessig H, Hess K (1939) The cellulose-sodium hydroxide-water system as a function of the temperature. Z Phys Chem B 43:309–328

    Article  Google Scholar 

  • Stepan AM, Michud A, Hellstén S, Hummel M, Sixta H (2016a) IONCELL-P&F: pulp fractionation and fiber spinning with ionic liquids. Ind Eng Chem Res 55:8225–8233. doi:10.1021/acs.iecr.6b00071

    Article  CAS  Google Scholar 

  • Stepan AM, Monshizadeh A, Hummel M, Roselli A, Sixta H (2016b) Cellulose fractionation with IONCELL-P. Carbohydr Polym 150:99–106. doi:10.1016/j.carbpol.2016.04.099

    Article  CAS  Google Scholar 

  • Su J-F, Huang Z, Yuan X-Y, Wang X-Y, Li M (2010) Structure and properties of carboxymethyl cellulose/soy protein isolate blend edible films crosslinked by Maillard reactions. Carbohydr Polym 79:145–153. doi:10.1016/j.carbpol.2009.07.035

    Article  CAS  Google Scholar 

  • Tian C, Zheng L, Miao Q, Cao C, Ni Y (2014) Improving the reactivity of kraft-based dissolving pulp for viscose rayon production by mechanical treatments. Cellulose 21:3647–3654. doi:10.1007/s10570-014-0332-1

    Article  CAS  Google Scholar 

  • Van Heiningen A (2006) Converting a kraft pulp mill into an integrated forest biorefinery. Pulp Pap Can 107:38–43

    Google Scholar 

  • Vigliani EC (1954) Carbon disulphide poisoning in viscose rayon factories. Br J Ind Med 11:235

    CAS  Google Scholar 

  • Wallis AFA, Wearne RH (1990) Chemical cellulose from radiata pine kraft pulp. Appita J 43:355–366

    CAS  Google Scholar 

  • Wang H, Pang B, Wu K, Kong F, Li B, Mu X (2014a) Two stages of treatments for upgrading bleached softwood paper grade pulp to dissolving pulp for viscose production. Biochem Eng J 82:183–187. doi:10.1016/j.bej.2013.11.019

    Article  CAS  Google Scholar 

  • Wang Q, Jahan MS, Liu S, Miao Q, Ni Y (2014b) Lignin removal enhancement from prehydrolysis liquor of kraft-based dissolving pulp production by laccase-induced polymerization. Bioresour Technol 164:380–385. doi:10.1016/j.biortech.2014.05.005

    Article  CAS  Google Scholar 

  • Wang Q, Liu S, Yang G, Chen J (2015a) Improvement membrane filterability in nanofiltration of prehydrolysis liquor of kraft dissolving pulp by laccase treatment. Bioresour Technol 181:124–127. doi:10.1016/j.biortech.2015.01.028

    Article  CAS  Google Scholar 

  • Wang Q, Liu S, Yang G, Chen J, Ni Y (2015b) Cationic polyacrylamide enhancing cellulase treatment efficiency of hardwood kraft-based dissolving pulp. Bioresour Technol 183:42–46. doi:10.1016/j.biortech.2015.02.011

    Article  CAS  Google Scholar 

  • Wang S, Lu A, Zhang L (2016) Recent advances in regenerated cellulose materials. Prog Polym Sci 53:169–206. doi:10.1016/j.progpolymsci.2015.07.003

    Article  CAS  Google Scholar 

  • Wang J, Ran R, Sunarso J, Yin C, Zou H, Feng Y, Li X, Zheng X, Yao J (2017a) Nanocellulose-assisted low-temperature synthesis and supercapacitor performance of reduced graphene oxide aerogels. J Power Sources 347:259–269. doi:10.1016/j.jpowsour.2017.02.072

    Article  CAS  Google Scholar 

  • Wang X, Jiang M, Zhou Z, Gou J, Hui D (2017b) 3D printing of polymer matrix composites: a review and prospective. Compos B Eng 110:442–458. doi:10.1016/j.compositesb.2016.11.034

    Article  CAS  Google Scholar 

  • Wegner TH, Winandy JE, Ritter MA Nanotechnology opportunities in residential and non-residential construction. In: 2nd International Symposium on Nanotechnology in Construction, Bilbao, Spain, 2005. Citeseer

  • Willgert M, Leijonmarck S, Lindbergh G, Malmström E, Johansson M (2014) Cellulose nanofibril reinforced composite electrolytes for lithium ion battery applications. J Mater Chem A 2:13556–13564. doi:10.1039/C4TA01139B

    Article  CAS  Google Scholar 

  • Xie H, Li S, Zhang S (2005) Ionic liquids as novel solvents for the dissolution and blending of wool keratin fibers. Green Chem 7:606–608. doi:10.1039/B502547H

    Article  CAS  Google Scholar 

  • Xiong Y, Chao W, Hanwei W, Qiufang Y, Bitao F, Yipeng C, Qingfeng S, Chunde J, Xijin X (2017) A 3D titanate aerogel with cellulose as the adsorption-aggregator for highly efficient water purification. J Mater Chem A. doi:10.1039/C6TA10638B

    Google Scholar 

  • Yang G, Jahan MS, Liu H, Ni Y (2012a) Acid hydrolysis of prehydrolysis liquor produced from the kraft-based dissolving pulp production process. Ind Eng Chem Res 51:13902–13907. doi:10.1021/ie3023059

    Article  CAS  Google Scholar 

  • Yang H, Tejado A, Alam N, Antal M, van de Ven TG (2012b) Films prepared from electrosterically stabilized nanocrystalline cellulose. Langmuir 28:7834–7842. doi:10.1021/la2049663

    Article  CAS  Google Scholar 

  • Yang G, Jahan MS, Ahsan L, Zheng L, Ni Y (2013) Recovery of acetic acid from pre-hydrolysis liquor of hardwood kraft-based dissolving pulp production process by reactive extraction with triisooctylamine. Bioresour Technol 138:253–258. doi:10.1016/j.biortech.2013.03.164

    Article  CAS  Google Scholar 

  • Yano H, Sugiyama J, Nakagaito AN, Nogi M, Matsuura T, Hikita M, Handa K (2005) Optically transparent composites reinforced with networks of bacterial nanofibers. Adv Mater 17:153–155. doi:10.1002/adma.200400597

    Article  CAS  Google Scholar 

  • Yewale T, Panchwagh S, Rajagopalan S, Dhamole PB, Jain R (2016) Enhanced xylitol production using immobilized Candida tropicalis with non-detoxified corn cob hemicellulosic hydrolysate. 3 Biotech 6:1–10. doi:10.1007/s13205-016-0388-8

    Article  Google Scholar 

  • Yu H, Guo J, Chen Y, Fu G, Li B, Guo X, Xiao D (2017) Efficient utilization of hemicellulose and cellulose in alkali liquor-pretreated corncob for bioethanol production at high solid loading by Spathaspora passalidarum U1-58. Bioresour Technol 232:168–175. doi:10.1016/j.biortech.2017.01.077

    Article  CAS  Google Scholar 

  • Zhang M, Eddy C, Deanda K, Finkelstein M, Picataggio S (1995) Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis. Science 267:240–243. doi:10.1126/science.267.5195.240

    Article  CAS  Google Scholar 

  • Zhang J, Xiao H, Yang Y (2015) Preparation of hemicellulose-containing latex and its application as absorbent toward dyes. J Mater Sci 50:1673–1678. doi:10.1007/s10853-014-8728-8

    Article  CAS  Google Scholar 

  • Zhao L, Yuan Z, Kapu NS, Chang XF, Beatson R, Trajano HL, Martinez DM (2017) Increasing efficiency of enzymatic hemicellulose removal from bamboo for production of high-grade dissolving pulp. Bioresour Technol 223:40–46. doi:10.1016/j.biortech.2016.10.034

    Article  CAS  Google Scholar 

  • Zhu X, Wen Y, Cheng D, Li C, An X, Ni Y (2015) Cationic amphiphilic microfibrillated cellulose (MFC) for potential use for bile acid sorption. Carbohydr Polym. doi:10.1016/j.carbpol.2015.06.063

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lew P. Christopher.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, H., Christopher, L.P. Recent trends and developments in dissolving pulp production and application. Cellulose 24, 2347–2365 (2017). https://doi.org/10.1007/s10570-017-1285-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-017-1285-y

Keywords

Navigation