Skip to main content
Log in

Highly charged nanocrystalline cellulose and dicarboxylated cellulose from periodate and chlorite oxidized cellulose fibers

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Softwood cellulose pulp was oxidized by a two-step oxidation process with sodium periodate followed by sodium chlorite at pH 5.0. The oxidized product was first separated into two fractions by centrifugation, and the supernatant was further separated in two fractions by addition of ethanol and centrifugation. Different levels of oxidation were performed on cellulose, and the mass ratio and carboxyl content of each fraction were determined. The first precipitate, which amount decreases with increasing oxidation level, consists of short fiber fragments (microfibrils) with length of 0.6–1.8 μm and width around 120 nm, which for sufficiently high oxidation levels, could readily be made into cellulose nanofibrils by stirring. The second precipitate (after alcohol addition) has a very high crystalline index of 91 % and contains rod-like particles with length of 120–200 nm and diameter around 13 nm, reminiscent of nanocrystalline cellulose. The supernatant contains water-soluble dicarboxylated cellulose, as proven by liquid C-13 NMR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Alam MN, Antal M, Tejado A, van de Ven TGM (2012) Salt-induced acceleration of chemical reactions in cellulose nanopores. Cellulose 19(2):517–522

    Article  CAS  Google Scholar 

  • Araki J, Wada M, Kuga S (2001) Steric stabilization of a cellulose microcrystal suspension by poly(ethylene glycol) grafting. Langmuir 17:21–27

    Article  CAS  Google Scholar 

  • Bruneel D, Schacht E (1993) Chemical modification of pullulan: 1. Periodate oxidation. Polymer 34:2628–2632

    Article  CAS  Google Scholar 

  • Chavan VB, Sarwade BD, Varma AJ (2002) Morphology of cellulose and oxidised cellulose in powder form. Carbohydr Polym 50:41–45

    Article  CAS  Google Scholar 

  • Dong XM, Gray DG (1997) Effect of counterions on ordered phase formation in suspensions of charged rodlike cellulose crystallites. Langmuir 13:2404–2409

    Google Scholar 

  • Dong XM, Revol JF, Gray DG (1998) Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose 5(1):19–32

    Article  CAS  Google Scholar 

  • Duchemin B, Newman R, Staiger M (2007) Phase transformations in microcrystalline cellulose due to partial dissolution. Cellulose 14:311–320

    Article  CAS  Google Scholar 

  • Elazzouzi-Hafraoui S, Putaux JL, Heux L (2009) Self-assembling and chiral nematic properties of organophilic cellulose nanocrystals. J Phys Chem B 113(32):11069–11075

    Google Scholar 

  • Hofreiter BT, Wolff IA, Mehltretter L (1957) Chlorous acid oxidation of periodate oxidized cornstarch. J Am Chem Soc 79:6457–6460

    Article  CAS  Google Scholar 

  • Hou QX, Liu W, Liu ZH, Bai LL (2007) Characteristics of wood cellulose fibers treated with periodate and bisulfite. Ind Eng Chem Res 46:7830–7837

    Article  CAS  Google Scholar 

  • Huang B, van de Ven TGM, Hill RJ (2011) Electro - optics of polymer nanotube dispersions. J Phys Chem C 115:8447–8456

    Article  CAS  Google Scholar 

  • Isogai A, Usuda M, Kato T, Uryu T, Atalla RH (1989) Solid-state CP/MAS carbon-13 NMR study of cellulose polymorphs. Macromolecules 22:3168–3172

    Article  CAS  Google Scholar 

  • Keshk SMAS (2008) Homogenous reactions of cellulose from different natural sources. Carbohydr Polym 74:942–945

    Article  CAS  Google Scholar 

  • Kim UJ, Kuga S, Wada M, Okano T, Kondo T (2000) Periodate oxidation of crystalline cellulose. Biomacromolecules 1:488–492

    Article  CAS  Google Scholar 

  • Kim UJ, Wada M, Kuga S (2004) Solubilization of dialdehyde cellulose by hot water. Carbohydr Polym 56:7–10

    Article  CAS  Google Scholar 

  • Maekawa E, Koshijima T (1984) Properties of 2,3-dicarboxy cellulose combined with various metallic ions. J Appl Polym Sci 29(7):2289–2297

    Article  CAS  Google Scholar 

  • Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iâ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082

    Article  CAS  Google Scholar 

  • Nisizawa K (1973) Mode of action of celluloses. J Ferment Technol 51:267–304

    CAS  Google Scholar 

  • Rolande B, Agnese M, Marco C (2000) Swelling behavior of carboxymethylcellulose hydrogels in relation to cross-linking, pH, and charge density. Macromolecules 33:7475–7480

    Article  Google Scholar 

  • Rutherford HA, Minor FW, Martin AR, Harris M (1942) Oxidation of cellulose: the reaction of cellulose with periodic acid. J Res Nat Bur Stand 29:131–140

    Article  CAS  Google Scholar 

  • Saito T, Hirota M, Tamura N, Isogai A (2010) Oxidation of bleached wood pulp by TEMPO/NaClO/NaClO2 system: effect of the oxidation conditions on carboxylate content and degree of polymerization. J Wood Sci 56(3):227–232

    Article  CAS  Google Scholar 

  • Schumacher GA, van de Ven TGM (1991) Brownian motion of rod-shaped colloidal particles surrounded by electrical double layers. J Chem Soc, Faraday Trans 87(7):971–976

    Article  CAS  Google Scholar 

  • Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-Ray diffractometer. Textile Res J 29:786–794

    Article  CAS  Google Scholar 

  • Staudinger H (1920) Über polymerisation. Ber Dtsch Chem Ges 53:1073–1085

    Google Scholar 

  • Tejado A, Alam MN, Antal M, Yang H, van de Ven TGM (2012) Energy requirements for the disintegration of cellulose fibers into cellulose nanofibers. Cellulose 19(3):831–842

    Google Scholar 

  • Varma AJ, Chavan VB (1995a) A study of crystallinity changes in oxidised celluloses. Polym Degrad Stab 49:245–250

    Article  CAS  Google Scholar 

  • Varma AJ, Chavan VB (1995b) Thermal properties of oxidized cellulose. Cellulose 2:41–49

    CAS  Google Scholar 

  • Varma AJ, Chavan VB, Rajmohanan PR, Ganapathy S (1997) Some observations on the high-resolution solid-state CP-MAS 13C-NMR spectra of periodate-oxidised cellulose. Polym Degrad Stab 58:257–260

    Article  CAS  Google Scholar 

  • Yang H, Tejado A, Alam MN, van de Ven TGM (2012) Films prepared from electrosterically stabilized nanocrystalline cellulose. Langmuir 28(20):7834–7842

    Article  CAS  Google Scholar 

  • Yuen SN, Choi SM, Phillips DL, Ma CY (2009) Raman and FTIR spectroscopic study of carboxymethylated non-starch polysaccharides. Food Chem 114:1091–1098

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was performed as part of NSERC Industrial Research Chair program, funded by NSERC and FPInnovations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theo G. M. van de Ven.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang , H., Alam, M.N. & van de Ven, T.G.M. Highly charged nanocrystalline cellulose and dicarboxylated cellulose from periodate and chlorite oxidized cellulose fibers. Cellulose 20, 1865–1875 (2013). https://doi.org/10.1007/s10570-013-9966-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-013-9966-7

Keywords

Navigation