Skip to main content
Log in

Interpretation of relaxation and swelling phenomena in lyocell regenerated cellulosic fibres and textiles associated with the uptake of solutions of sodium hydroxide

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The uptake of solutions of sodium hydroxide by lyocell fibre results in a phenomenon in textiles described as swelling–shrinkage. The response of woven fabrics in a tensile stress–relaxation experiment shows two time-dependent processes, corresponding to different mechanisms of pressure development. Rapid diffusion has been assigned to osmotic swelling through the interconnected pore structure of the fibre (D = 6–15 × 10−12 m2/s), which is influenced by the extent of ionization of hydroxyl groups at the pore surfaces. A ratio for the cellulose and water dissociation constants (Kcell/Kw) of 70 provides best agreement with experimental data. A second slower diffusion process (D = 2–10 × 10−14 m2/s) is assigned to transport through the cellulose polymer structure, associated with the Na-cellulose transition. This can be modeled assuming an ion-exchange equilibrium, where the cellulose gel converts reversibly between compact hydrogen and expanded sodium forms, with K = 1.04 × 1014, in favour of the hydrogen form. The model successfully predicts the concentration dependence of the transition and the movement to higher concentration with external constraint. The slow diffusion process only becomes apparent at high alkali concentrations, as the pores in the fibre collapse due to the expansion of the gel. Continued gel-diffusion is only possible through the polymer phase, which then dominates over fast pore-diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Abu-Rous M, Ingolic E, Schuster KC (2006) Visualisation of the fibrillar and pore morphology of cellulosic fibres applying transmission electron microscopy. Cellulose 13:411–419

    Article  CAS  Google Scholar 

  • Bird CL, Boston WS (1975) (eds) The theory of colouration of textiles. Chapter 5 by Jones F. The Dyers Company Publications, Trust, Bradford UK

  • Colom X, Carillo F (2002) Crystallinity changes in lyocell and viscose-type fibres by caustic treatment. Eur Polym J 38:2225–2230

    Article  CAS  Google Scholar 

  • Crawshaw J, Cameron RE (2000) A small angle X-ray scattering study of the pore structure in Tencle cellulose fibres and the effects of physical treatments. Polymer 41:4691–4698

    Article  CAS  Google Scholar 

  • Donnan FG (1934) Z physik Chem 168A:369

  • Eichhorn SJ, Young RJ, Davies GR (2005) Modeling crystal and molecular deformation in regenerated cellulose fibers. Biomacromolecules 6:507–513

    Article  CAS  Google Scholar 

  • Fieldson GT Barbari TA (1993) The use of FTIR-ATR spectroscopy to characterize penetrant diffusion in polymers. Polymer 34(6):1146–1153

    Article  Google Scholar 

  • Fink H-P, Weigel P, Purz H-J, Ganster J (2001) Structure formation of regenerated cellulose materials from NMMO-solutions. Prog Polym Sci 26:1473–1524

    Article  CAS  Google Scholar 

  • Glueckauf E (1952) A theoretical treatment of cation exchangers I. The prediction of equilibrium constants from osmotic data. Proc Roy Soc A 214(1117):207–225

    Article  CAS  Google Scholar 

  • Gregor HP (1951) Gibbs-Donnan equilibria in ion exchange resin systems. J Am Chem Soc 73:642–650

    Article  CAS  Google Scholar 

  • Hearles JWS, Miles LWC (1971) The setting of fibres and fabrics. Merrow Publishing Co Ltd, Watford, UK

    Google Scholar 

  • Hodson S, Earlam R (1993) The incorporation of gel pressure into the irreversible thermodynamic equation of fluid flow in order to explain biological tissue swelling. J Theor Biol 163:173–180

    Article  CAS  Google Scholar 

  • Ibbett (1996) Tencel Ltd Internal report

  • Ibbett RN, Hsieh Y-L (2001) Effect of fibre swelling on the structure of lyocell fabrics. Text Res J 71(2):164–173

    CAS  Google Scholar 

  • Ibbett RN, Fashing M, Domvoglou D (2007) Characterisation of the supramolecular structure of chemically and physically modified regenerated cellulosic fibers by means of high-resolution Carbon-13 solid state NMR. Polymer 48:1287–1296

    Article  CAS  Google Scholar 

  • Kawai T (1959) Sorption of water vapor by cellulose and polymers at high humidities. J Polym Sci 37:181–198

    Article  CAS  Google Scholar 

  • Kolpak FJ, Weih M, Blackwell J (1978) Mercerisation of cellulose: l. Determination of the structure of mercerized cotton. Polymer 19:123–131

    Article  CAS  Google Scholar 

  • Laity PR, Gover PM, Godward J, McDonald PJ, Hay JN (2000) Structural studies and diffusion measurements of water-swollen cellophane by NMR Imaging. Cellulose 7:227–246

    Article  CAS  Google Scholar 

  • Lenz J, Schurz J, Eichinger D (1994) Properties and structure of lyocell and viscose-type fibres in the swollen state. Lenzinger Berichte 74:19–25

    CAS  Google Scholar 

  • Moss CE, Butler MF, Müller M, Cameron RE (2002) Microfocus small-angle X-ray scattering investigation of the skin-core microstructure of lyocell cellulose fibers. J Appl Polym Sci 83:2799–2816

    Article  CAS  Google Scholar 

  • Neale SM (1929) J Textile Inst 20:T373

    Google Scholar 

  • Nishimura H, Sarko A (1987) Mercerisation of cellulose III. Changes in crystallite sizes. J Appl Polym Sci 33:855–866

    Article  CAS  Google Scholar 

  • Nishimura H, Sarko A (1991b) Mercerisation of cellulose 6. Crystal and molecular structure of Na-cellulose IV. Macromolecules 24:771–778

    Article  CAS  Google Scholar 

  • Nishimura H, Okano T, Sarko A (1991a) Mercerisation of cellulose 5. Crystal and molecular structure of Na-cellulose-I. Macromolecules 24:759–770

    Article  CAS  Google Scholar 

  • Okano T, Sarko A (1984) Mercerisation of cellulose. I X-ray diffraction evidence for intermediate structures. J Appl Polym Sci 29:4175–4182

    Article  CAS  Google Scholar 

  • Okano T, Sarko A (1985) Mercerisation of cellulose. II Alkali-cellulose intermediates and a possible mercerization mechanism. J Appl Polym Sci 30:325–332

    Article  CAS  Google Scholar 

  • Paterson R (1970) An introduction to ion-exchange. Hayden and Son Ltd, London

    Google Scholar 

  • Pennings AJ, Prins W (1962) The polyelectrolyte nature of cellulose gels in alkali solutions. J Polym Sci 58:229–248

    Article  CAS  Google Scholar 

  • Pierce FT (1937) The geometry of cloth structure. J Textile Inst 28:45–96

    Article  Google Scholar 

  • Preston C (1986) (ed) The Dyeing of Cellulosic Fibres. Chapter 3. by Holme I, Dyers’ Company Publications Trust, Bradford UK

  • Scallan AM, Grignon J (1980) Effect of pH and neutral salts upon the swelling of cellulose gels. J Appl Polym Sci 25:2829–2843

    Article  Google Scholar 

  • Schurz J, Lenz J (1994) Investigation of the structure of regenerated cellulose fibres. Macromol Symp 83:273–289

    CAS  Google Scholar 

  • Tarfaoui M, Akesbi S (2001) Study of the mechanical behaviour of textile structures. Int J Clothing Sci Technol 13:166–175

    Article  Google Scholar 

  • Yokota H, Sei T, Horii F, Kitamaru R (1990) 13C CP/MAS NMR study on alkali cellulose. J App Pol Sci 41:783–791

    Article  CAS  Google Scholar 

  • Zhang W, Okubayashi S, Bechtold T (2005) Fibrillation tendency of cellulosic fibers. Part 1: effects of swelling. Cellulose 12(3):267–273

    Article  CAS  Google Scholar 

  • Zhu Y, Ren X, Wu C (2004) Influence of alkali treatment on the structure of newcell fibres. J Appl Polym Sci 93:1731–1735

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger Ibbett.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ibbett, R., Taylor, J., Schuster, K.C. et al. Interpretation of relaxation and swelling phenomena in lyocell regenerated cellulosic fibres and textiles associated with the uptake of solutions of sodium hydroxide. Cellulose 15, 393–406 (2008). https://doi.org/10.1007/s10570-007-9180-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-007-9180-6

Keywords

Navigation