Skip to main content
Log in

Mechanistic studies on cationic ring-opening polymerisation of cyclodextrin derivatives using various Lewis acids

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

In order to investigate the potential of cyclodextrins for the preparation of block-like substituted polysaccharides, we submitted mixtures of heptakis[2,3,6-tri-O-methyl]-β-cyclodextrin (Me21-β-CD, 1) and heptakis[2,3,6-tri-O-methyl-d 3]-β-cyclodextrin ((Me-d 3)21-β-CD, 2) to cationic ring-opening polymerisation (CROP). Reactions were performed with BF3·OEt2, methyl triflate (MeOTf), and Et3OSbCl6. Products were compared with respect to their degree of polymerisation (DP) and the average block length (BL). Highest DP was observed with BF3·OEt2, while Et3OSbCl6 was the most active initiator. Average block length decreased from 14 in the early stage of product formation to about 2 due to competing chain transfer reaction. 1H NMR spectroscopy, GLC, GLC–MS, ESI-MS and MALDI-TOF-MS were applied for detailed investigations of side reactions. During incubation with BF3·OEt2, a stereroisomeric β-CD with one β-glucosidic linkage (Me21-β-CD6α1β, 3a (Me-d 3)21-β-CD6α 1β, 3b) is formed as an intermediate, while linear Me21- and (Me-d 3)21-maltoheptaose (4a/b) was detected in the early stage of the reaction promoted by MeOTf. In the case of Et3OSbCl6, both intermediates (3a/b, 4a/b) can be observed during the lag phase of polymerisation, but to a very low degree. End group analysis by GLC reveals that some alkyl exchange occurs at position 3 and 6 in the presence of Et3OSbCl6, and that polymerisation is also initiated by protons. Copolymerisation of heptakis[2,3,6-tri-O-benzyl]-β-cyclodextrin (Bn21-β-CD, 5) and Me21-β-CD (1) and subsequent debenzylation yielded a polymer of only 1,4-glcp-Me3- and 1,4-glcp-residues. Reactivity of Bn21-β-CD was significantly lower than of Me21-β-CD, resulting in higher average block length of 1,4-glcp-Me3-units.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adden R., Bösch A. and Mischnick P. (2004). Novel possibilities by cationic ring-opening polymerisation of cyclodextrin derivatives: preparation of a copolymer bearing block-like sequences of tri-O-methylglucosyl units. Macromol. Chem. Phys. 205:2072–2079

    Article  CAS  Google Scholar 

  • Andrews K.T., Klatt N., Adams Y., Mischnick P. and Schwartz-Albiez R. (2005). Inhibition of chondroitin-4-sulfate-specific adhesion of Plasmodium falciparum infected erythrocytes by sulfated polysaccharides. Infect. Immun. 73:4288–4294

    Article  PubMed  CAS  Google Scholar 

  • Ciucanu I. and Kerek F. (1984). A simple and rapid method for the permethylation of carbohydrates. Carbohydr. Res. 131:209–217

    Article  CAS  Google Scholar 

  • Dicke R., Rahn K., Haack V. and Heinze Th. (2001). Starch derivatives of high degree of functionalization. Part 2. Determination of the functionalization pattern of p-toluenesulfonyl starch by peracylation and NMR spectroscopy. Carbohydr. Polym. 45:43–51

    Article  CAS  Google Scholar 

  • Evans A.G. and Meadows G.W. (1950). Polymerisation of isobutene by boron trifluoride. Trans. Farad. Soc. 46:327–331

    Article  CAS  Google Scholar 

  • Gohdes M. and Mischnick P. (1998). Determination of the substitution pattern in the polymer chain of cellulose sulfates. Carbohydr. Res. 309:109–115

    Article  CAS  Google Scholar 

  • Gonera A., Goclik V., Baum M. and Mischnick P. (2002). Preparation and structural characterisation of O-aminopropyl starch and amylose. Carbohydr. Res. 337:2263–2272

    Article  PubMed  CAS  Google Scholar 

  • Higashimura T., Miki T., Okamura S. (1965). Kinetic studies of the solution polymerization of trioxane catalyzed by BF3+O(C2H5)2. I. The effect of the catalyst and the water concentration on the rate of polymerization. Bull. Chem. Soc. Jpn. 38:2067–2073

    Article  CAS  Google Scholar 

  • Johnson J.R. and Shankland N. (1985). Full assignment of the Proton and Carbon-13 NMR Spectra of 2,3,6-Tri-O-methyl- \(\beta\)-cyclodextrin. Tetrahedron 41:3147–3152

    Article  CAS  Google Scholar 

  • Kamitakahara H., Hori M. and Nakatsubo F. (1996). Substituent effect on ring-opening polymerization of regioselectively acylated \(\alpha\)-d-Glucopyranose-1,2,4-orthopivalat derivatives. Macromolecules 29:126–6131

    Google Scholar 

  • Karakawa M., Mikawa Y., Kamitakahara H. and Nakatsubo F. (2002). Preparation of regioselectively methylated cellulose acetates and their 1H and 13C NMR spectroscopic analysis. J. Polym. Sci.: Part A: Polym. Chem. 40:4167–4179

    Article  CAS  Google Scholar 

  • Kern W., Chedron H. and Jaacks V. (1961). Polyoxymethylene. Angew. Chem. 73:177–186

    Article  CAS  Google Scholar 

  • Kern W., Jaacks V. (1960). Some kinetic effects in the polymerization of 1,3,5-Trioxane. J. Polym. Sci. 48 :399–404

    Article  CAS  Google Scholar 

  • Kikuzawa A., Kida T., Nakatsuji Y. and Akashi M. (2005). Short synthesis of skeleton-modified cyclodextrin derivatives with unique inclusion ability. J. Org. Chem. 70:1253–1261

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi S., Danda H., Saegusa T. (1974). Superacids and their derivatives. IV. Kinetic studies on the ring-opening polymerization of tetrahydrofuran initiated with ethyl trifluoromethanesulfonate by means of 19F and 1H nuclear magnetic resonance spectroscopy. Evidence for the oxonium–ester equilibrium of the propagating species. Macromolecules 7:415–420

    Article  CAS  Google Scholar 

  • Kondo T. and Gray D.G. (1991). The preparation of O-methyl- and O-ethyl-celluloses having controlled distribution of substituents. Carbohydr. Res. 220:173–183

    Article  CAS  Google Scholar 

  • Kondo T. (1993). Preparation of 6-O-alkylcelluloses. Carbohydr. Res. 238:231–240

    Article  CAS  Google Scholar 

  • Koschella A., Heinze Th. and Klemm D. (2001). First synthesis of 3-O functionalized cellulose ethers via 2,6-di-O-protected silyl cellulose. Macromol. Biosci. 1:49–54

    Article  CAS  Google Scholar 

  • Lecourt T., Mallet J.-M. and Sinaÿ P. (2003). An Efficient Preparation of 6I,IV Dihydroxy Permethylated \(\beta\)-Cyclodextrin. Carbohydr. Res. 338:2417–2419

    Article  PubMed  CAS  Google Scholar 

  • Lecourt T., Herault A., Pearce A.J., Sollogoub M. and Sinaÿ P. (2004). Triisobutylaluminium and diisobutylaluminium hydride as molecular scalpels: the regioselective stripping of perbenzylated sugars and cyclodextrins. Chemistry 10:2960–2971

    Article  PubMed  CAS  Google Scholar 

  • Liebert T. and Heinze Th. 1998. Cellulose Derivatives, Modification, Characterization and Nanostructures. In: Heinze Th. and Glasser W.G. (eds), ACS Symposium Series, Vol. 688, 61 pp

  • Mann G., Kunze J., Loth F. and Fink H.-P. (1998). Cellulose ethers with a block-like distribution of the substituents by structure-selective derivatization of cellulose. Polymer 39:3155–3165

    Article  CAS  Google Scholar 

  • Matyjaszewski K., Penczek S. (1974). Macroester, dbr Macroion equilibrium in the cationic polymerization of the THF observed directly by 300 MHz proton NMR. Polym. Sci., Polym. Chem. Ed. 12:1905–1912

    Article  CAS  Google Scholar 

  • Meerwein H. (1965). Oxoniumsalze. In: Müller E. (eds). Methoden der Organischen Chemie Band VI/3 Sauerstoff-Verbindungen Teil 3. Georg Thieme Verlag, Stuttgart, pp 328–363

    Google Scholar 

  • Mischnick P., Heinrich J., Gohdes M., Wilke O. and Rogmann N. (2000). Structure analysis of 1,4-glucan derivatives. Macromol. Chem. Phys. 201:1985–1995

    Article  CAS  Google Scholar 

  • Mischnick P. and Kühn G. (1996). Correlation between reaction conditions and primary structure: model studies on methyl amylose. Carbohydr. Res. 290:199–207

    Article  CAS  Google Scholar 

  • Nakatsubo F., Kamitakahara H. and Hori M. (1996). Cationic ring-opening polymerization of 3,6-Di-O-benzyl- \(\alpha\)-d-glucose 1,2,4-orthopivalate and the first chemical synthesis of cellulose. J. Am. Chem. Soc. 118:1677–1681

    Article  CAS  Google Scholar 

  • Petzold K., Koschella A., Klemm D. and Heublein B. (2003). Silylation of cellulose and starch – selectivity, structure analysis, and subsequent reactions. Cellulose 10:251–269

    Article  CAS  Google Scholar 

  • Philipp B., Klemm D. and Wagenknecht W. (1995). Regioselektive Veresterung und Veretherung von Cellulose und Cellulosederivaten. Synthese regioselektiv substituierter Celluloseester. Das Papier 49:58–64

    CAS  Google Scholar 

  • Sato T., Nakamura H., Ohno Y. (1990). Synthesis of 1,4-anhydro-2,3,6-tri-O-benzyl- \(\alpha\)-glucopyranose by cis-ring-closure of a glycosyl chloride. Carbohydr. Res. 199:31–35

    Article  CAS  Google Scholar 

  • Schaller J. and Heinze Th. (2005). Studies on the synthesis of 2,3-O-hydroxyalkyl ethers of cellulose. Macromol. Biosci. 5:58–63

    Article  PubMed  CAS  Google Scholar 

  • Suzuki M., Numata O. and Shimazaki T. (2001). Cyclodextrin as a macrocyclic momomer: cationic ring-opening polymerisation of O-permethylcyclodextrins. Macromol. Rapid Commun. 22:1354–1357

    Article  CAS  Google Scholar 

  • Suzuki M. and Shimazaki T. (2003). Preparation of a unique glucan with large intervals in molecular weight distribution. Controlled ring-opening polymerization of O-permethylcyclodextrin. Org. Biomol. Chem. 1:604–608

    Article  PubMed  CAS  Google Scholar 

  • Suzuki M., Numata O. and Shimazaki T. (2004). Novel cationic ring-opening polymerization of cyclodextrin: a uniform macrocyclic monomer with unique character. Macromol. Symp. 215:255–265

    Article  CAS  Google Scholar 

  • Sweet D.P., Shapiro R.H. and Albersheim P. (1975). Quantitative analysis by various g.l.c. response-factor therories for partially methylated and partially ethylated alditol acetates. Carbohydr. Res. 40:217–225

    Article  CAS  Google Scholar 

  • Yamashita Y., Okuda M. and Karahara H. (1968). Kinetic studies on the polymerisation of 1,3-dioxolane catalyzed by triethyloxonium-tetrafluoroborate. Makromolekulare Chemie 117:256–264

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by Fonds der Chemischen Industrie (FCI) by means of a Doktorandenstipendium for Andreas Bösch.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petra Mischnick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bösch, A., Nimtz, M. & Mischnick, P. Mechanistic studies on cationic ring-opening polymerisation of cyclodextrin derivatives using various Lewis acids. Cellulose 13, 493–507 (2006). https://doi.org/10.1007/s10570-005-9029-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-005-9029-9

Keywords

Navigation