Skip to main content
Log in

Approximating orbits in a rotating gravity field with oblateness and ellipticity perturbations

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

This paper explores the problem of analytically approximating the orbital state for a subset of orbits in a rotating potential with oblateness and ellipticity perturbations. This is done by isolating approximate differential equations for the orbit radius and other elements. The conservation of the Jacobi integral is used to make the problem solvable to first order in the perturbations. The solutions are characterized as small deviations from an unperturbed circular orbit. The approximations are developed for near-circular orbits with initial mean motion \(n_{0}\) around a body with rotation rate c. The approximations are shown to be valid for values of angular rate ratio \(\varGamma = c/n_{0} > 1\), with accuracy decreasing as \(\varGamma \rightarrow 1\), and singularities at and near \(\varGamma = 1\). Extensions of the methodology to eccentric orbits are discussed, with commentary on the challenges of obtaining generally valid solutions for both near-circular and eccentric orbits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

References

  • Battin, R.H.: An Introduction to the Mathematics and Methods of Astrodynamics. AIAA Education Series, New York, USA (1987)

    MATH  Google Scholar 

  • Binney, J., Tremaine, S.: Galactic Dynamics, 2nd edn. Princeton University Press, Princeton (2008)

    Book  Google Scholar 

  • Broschart, S.B., Lantoine, G., Grebow, D.J.: Quasi-terminator orbits near primitive bodies. Celest. Mech. Dyn. Astron. 120, 195–215 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  • Broucke, R.A., Cefola, P.J.: On the equinoctial orbit elements. Celest. Mech. 5, 303–310 (1972)

    Article  ADS  Google Scholar 

  • Brouwer, D.: Solution of the problem of artificial satellite theory without drag. Astron. J. 64, 378–397 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  • Burnett, E.R., Butcher, E.A., Sinclair, A.J., Lovell, T.A.: Linearized relative orbital motion model about an oblate body without averaging, AAS 18–218. Adv. Astron. Sci. 167, 691–710 (2018)

    Google Scholar 

  • Hu, W., Scheeres, D.J.: Numerical determination of stability regions for orbital motion in uniformly rotating second degree and order gravity fields. Planet. Space Sci. 52, 685–692 (2004)

    Article  ADS  Google Scholar 

  • Hu, W.D., Scheeres, D.J.: Periodic Orbits in Rotating Second Degree and Order Gravity Fields. Chin. J. Astron. Astrophys. 8, 108–118 (2008)

    Article  ADS  Google Scholar 

  • Izsak, I.G.: On satellite orbits with very small eccentricity. Astron. J. 66, 129–131 (1961)

    Article  ADS  Google Scholar 

  • Kozai, Y.: The motion of a close earth satellite. Astron. J. 64, 367–377 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  • Mahajan, B., Vadali, S.R., Alfriend, K.T.: Exact Delaunay normalization of the perturbed Keplerian Hamiltonian with tesseral harmonics. Celest. Mech. Dyn. Astron. 130, 25 (2018). https://doi.org/10.1007/s10569-018-9818-8

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Martinusi, V., Dell’Elce, L., Kerschen, G.: Analytic propagation of near-circular satellite orbits in the atmosphere of an oblate planet. Celest. Mech. Dyn. Astron. 123, 85–103 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  • Martinusi, V., Gurfil, P.: Solutions and periodicity of satellite relative motion under even zonal harmonics perturbations. Celest. Mech. Dyn. Astron. 111, 387–414 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  • Nayfeh, A., Mook, D.: Nonlinear Oscillations. Wiley Classics Library, Wiley, Hoboken (2008)

    MATH  Google Scholar 

  • Prussing, J.E., Conway, B.A.: Orbital Mechanics. Oxford University Press, New York (2013)

    MATH  Google Scholar 

  • Scheeres, D.J.: The effect of \(C_{22}\) on orbit energy and angular momentum. Celest. Mech. Dyn. Astron. 73, 339–348 (1999)

    Article  ADS  Google Scholar 

  • Scheeres, D.J.: Orbit mechanics about asteroids and comets. J. Guid. Control Dyn. 35, 987–997 (2012a)

  • Scheeres, D.J.: Orbital Motion in Strongly Perturbed Environments. Springer, Berlin (2012b)

  • Scheeres, D.J., Marzari, F.: Spacecraft dynamics in the vicinity of a comet. J. Astron. Sci. 50, 35–52 (2002). https://doi.org/10.1007/BF03546329

    Article  Google Scholar 

  • Scheeres, D.J., Ostro, S.J., Hudson, R.S., Werner, R.A.: Orbits close to asteroid 4769 Castalia. Icarus 121, 67–87 (1996)

    Article  ADS  Google Scholar 

  • Vinti, J.P.: Theory of the orbit of an artificial satellite with use of spheroidal coordinates. Astron. J. 65, 353 (1960)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ethan R. Burnett.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burnett, E.R., Schaub, H. Approximating orbits in a rotating gravity field with oblateness and ellipticity perturbations. Celest Mech Dyn Astr 134, 5 (2022). https://doi.org/10.1007/s10569-022-10061-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10569-022-10061-z

Keywords

Navigation