Skip to main content
Log in

Elliptical shape-based model for multi-revolution planeto-centric mission scenarios

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

The paper presents a novel 3-dimensional shape-based algorithm which extends the domain of analytical solutions to planeto-centric mission scenarios, which classically entail even thousands revolutions to transfer to the final orbit. Thanks to the strong physical meaning the proposed method keeps while shaping the trajectory, the method succeeds in outputting a solution close to the real optimum. The proposed approach allows to easily formalize practical mission constraints, such as maximum thrust threshold and eclipses; free and fixed time of flight is manageable as well. The approach is almost completely analytic, which is beneficial as it significantly decreases the computational load. It is well suited for complex mission scenarios and for fast detection near optimal solutions to support the whole mission design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

a :

Semi-major axis

\(a_{\mathrm{pert}}\) :

Perturbation acceleration

\(a_\mathrm{s}\) :

Semi-major axis

\(A_{\mathrm{sa}}\) :

Solar panel surface

e :

Eccentricity

f :

Second MEE

\(G_{\mathrm{loss}}\) :

Gravity loss

g :

Third MEE

h :

Fourth MEE

\(I_\mathrm{s}\) :

Specific impulse

i :

Inclination

k :

Fifth MEE

KP:

Keplerian elements

L :

Sixth MEE

m :

Mass

\(N_{\mathrm{rev}}\) :

Number of revolutions

\(P_{\mathrm{SS}}\) :

Spacecraft power consumption

p :

First MEE

r :

In-plane attractor distance

s :

Attractor distance

T :

Thrust

\(T_{\mathrm{IN}}\) :

In-plane thrust

\(T_{\mathrm{OUT}}\) :

Out-of-plane thrust

t :

Time

\(v_\mathrm{r}\) :

Radial velocity

\(v_z\) :

Normal velocity

\(v_{\theta }\) :

Transversal velocity

x :

Non-dimensional anomaly

z :

Out-of-plane displacement

\(\alpha \) :

In-plane thrust angle

\(\beta \) :

Out-of-plane thrust angle

\(\gamma \) :

Flight path angle

\(\delta \) :

Declination

\(\varDelta _\mathrm{L}\) :

Variation in true longitude

\(\eta _{\mathrm{tot}}\) :

Power production efficiency

\(\theta \) :

Anomaly

\(\phi \) :

Solar aspect angle

\(\chi \) :

Interpolating function

\(\psi \) :

Total transfer angle

\(\omega \) :

Angular velocity

References

  • Abdelkhalik, O., Taheri, E.: Shape based approximation of constrained low-thrust space trajectories using Fourier series. J. Spacecr. Rockets 49, 535–546 (2012)

    Article  ADS  Google Scholar 

  • Abdelkhalik, O., Taheri, E.: Approximate on-off low-thrust space trajectories using Fourier series. J. Spacecr. Rockets 49, 962–965 (2012)

    Article  ADS  Google Scholar 

  • Arianespace, VEGA user’s Manual (2014)

  • Battin, R.H.: An Introduction to the Mathematics and Methods of Astrodynamics, chapter 1. AIAA education Series, Reston (1999)

    MATH  Google Scholar 

  • Cefola, P.J.: Equinoctial Orbital Elements—Application To Artificial Satellite Orbits. In: AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Palo Alto, California (1972)

  • Chobotov, V.A.: Orbital Mechanics. AIAA Education Series, Reston (2002)

    MATH  Google Scholar 

  • Conway, B.A.: Spacecraft Trajectory Optimization, pp. 37–76. Cambridge University Press, Cambridge (2010)

  • Curtis, H.: Orbital Mechanics for Engineering Students. Elsevier, Oxford (2005)

    Google Scholar 

  • De Pascale, P., Vasile, M.: Preliminary design of low-thrust multiple gravity-assist trajectories. J. Spacecr. Rockets 43, 1065–1076 (2006)

    Article  ADS  Google Scholar 

  • European Space Agency, ESA Space Debris Mitigation Compliance Verification Guidelines (2015)

  • Gondelach, D.J., Noomen, R.: Hodographic-shaping method for low-thrust interplanetary trajectory design. J. Spacecr. Rockets 52, 728–738 (2015)

    Article  ADS  Google Scholar 

  • Graham, K.F., Rao, A.V.: Minimum-time trajectory optimization of multiple revolution low-thrust earth-orbit transfers. J. Spacecr. Rockets 52, (2015)

  • Kluever, C., Oleson, R.: Direct approach for computing near-optimal low-thrust earth-orbit transfers. J. Spacecr. Rockets 35, 509–515 (1998)

    Article  ADS  Google Scholar 

  • Larson, W.J., Wertz, J.R.: Space Mission Analysis and Design, pp. 407–427. Kluver Academy Publisher, London (1999)

  • Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (2006)

    MATH  Google Scholar 

  • Novak, D.M., Vasile, M.: Improved shaping approach to the preliminary design of low-thrust trajectories. J. Guid. Control Dyn. 34, 128–147 (2011)

    Article  ADS  Google Scholar 

  • Petropoulos, A.E., Sims, John A.: A Review of Some Exact Solutions to the Planar Equations of Motion of a Thrusting Spacecraft. In: Proceedings of the 2nd International Symposium on Low Thrust Trajectories, Toulouse, France, 18 June (2002)

  • Petropoulos, A.E., Longuski, J.M.: Shape-based algorithm for automated design of low-thrust, gravity-assist trajectories. J. Spacecr. Rockets 41, 787–796 (2004)

    Article  ADS  Google Scholar 

  • Prinetto, J., Lavagna, M.: Main Belt Active Asteroids Samples Collection And Return Mission Design. In: Italian Association of Aeronautics and Astronautics XXIV International Conference, AIDAA, Palermo-Enna, Italy, 18–22 September (2017)

  • Sreesawet, S., Dutta, A.: Fast and robust computation of low-thrust orbit-raising trajectories. J. Guid. Control Dyn. 41, 1888–1905 (2018)

    Article  ADS  Google Scholar 

  • Sutton, G.P., Biblaz, O.: Rocket Propulsion Elements, pp. 622–672. Wiley, Hoboken (2010)

  • Taheri, E., Kolmanovsky, I., Atkins, E.: Shaping low-thrust trajectories with thrust-handling feature. Adv. Space Res. 879–890, (2017)

  • Taheri, E., Abdelkhalik, O.: Initial three-dimensional low-thrust trajectory design. Adv. Space Res. 57, 889–903 (2016)

    Article  ADS  Google Scholar 

  • Topputo, F., Zhang, C.: Survey of direct transcription for low-thrust space trajectory optimization with applications. Abst. Appl. Anal. 2014, 15 (2014)

    MathSciNet  MATH  Google Scholar 

  • Tsien, H.S.: Take-off from satellite orbit. J. Am. Rocket Soc. 23, 233–236 (1953)

    Article  Google Scholar 

  • Wall, B.J.: Shape-Based Approximation Method for Low-Thrust Trajectory Optimization. In: AIAA/AAS Astrodynamics Specialist Conference and Exhibit, AIAA. Honolulu, Hawaii (2008)

  • Wall, B.J., Conway, B.A.: Shape-based approach to low-thrust rendezvous trajectory design. J. Guid. Control Dyn. 32, 95–101 (2009)

    Article  ADS  Google Scholar 

  • Xie, C., Zhang, G., Zhang, Y.: Shaping approximation for low-thrust trajectories with large out-of-plane motion. J. Guid. Control Dyn. 39, 2776–2785 (2016)

    Article  ADS  Google Scholar 

  • Zeng, K., Geng, Y., Wu, B.: Shape-based analytic safe trajectory design for spacecraft equipped with low-thrust engines. Aerosp. Sci. Technol. 62, 87–97 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacopo Prinetto.

Ethics declarations

Conflict of interest

Authors declare that no conflict of interest holds.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A List of derivatives

A List of derivatives

Appendix reports the equations fundamental to the geometrical interpolation of the trajectory. The subscript ’1’ indicates the departure orbit, while the subscript ’2’ indicates the arrival orbit.

1.1 A.1 Departure orbit

The inclination of the initial orbit with respect to the reference plane can be computed as in Eq. 39.

$$\begin{aligned} \left\{ \begin{array}{lll} \cos {\alpha _{1}} = \hat{\mathbf{h }}_{1} \cdot \hat{\mathbf{h }}_{REF}\\ \sin {\alpha _{1}} = \xi _{1} \root \of {1-\cos {\alpha _{1}}^2}\\ \left\{ \begin{array}{ll} \xi _{1} = 1 \;\;\;\;\;\;\;\;\;\; if \;\;\;\; \mathbf{v} _{i} \cdot \hat{\mathbf{h }}_{REF} > 0 \\ \xi _{1} = -1 \;\;\;\;\;\;\;\;\;\; if \;\;\;\; \mathbf{v} _{i} \cdot \hat{\mathbf{h }}_{REF} < 0 \\ \end{array} \right. \end{array} \right. \end{aligned}$$
(39)

The declination (\(\delta (x)_1\)) of the initial orbit over the reference plane can be computed using Eq. 40, while its derivatives can be computed using Eqs. 41,  42 and  43:

$$\begin{aligned} \sin {\delta _{1}}= & {} \sin {\alpha _{1}}\frac{\sin (\psi x)}{\sin {\beta _{1}}} \end{aligned}$$
(40)
$$\begin{aligned} \delta _{1}'= & {} \frac{\psi \sin {\alpha _{1}} \cos {(\psi x)} - \beta _{1}'\cos {\beta _{1}}\sin {\delta _{1}}}{\cos {\delta _{1}}\sin {\beta _{1}}} \end{aligned}$$
(41)
$$\begin{aligned} \delta _{1}''= & {} \frac{-\psi ^2\sin {\alpha _{1}\sin {(\psi x)}} + \sin {\beta _{1}}\sin {\delta _{1}}\left( \delta _{1}'^{2} + \beta _{1}'^{2} \right) }{\cos {\delta _{1}}\sin {\beta _{1}}}+ \nonumber \\&- \frac{2\delta _{1}'\beta _{1}'\cos {\delta _{1}}\cos {\beta _{1}} + \beta _{1}''\sin {\delta _{1}}\cos {\beta _{1}}}{\cos {\delta _{1}}\sin {\beta _{1}}} \end{aligned}$$
(42)
$$\begin{aligned} \delta _{1}'''= & {} \frac{-\psi ^3\sin {\alpha _{1}\cos {(\psi x)}} + \sin {\beta _{1}}\sin {\delta _{1}} \left( 3\delta _{1}'\delta _{1}'' + 3\beta _{1}'\beta _{1}'' \right) }{\cos {\delta _{1}}\sin {\beta _{1}}} \nonumber \\&+\cos {\beta _{1}}\frac{ -\cos {\delta _{1}} \left( 3\delta _{1}'\delta _{1}'' + 3\beta _{1}'\beta _{1}'' \right) + \sin {\delta _{1}} \left( 3\delta _{1}'^{2}\beta _{1}' + \beta _{1}'^{3}-\beta _{1}''' \right) }{\cos {\delta _{1}}\sin {\beta _{1}}} \nonumber \\&+\frac{\sin {\beta _{1}}\cos {\delta _{1}} \left( 3\beta _{1}'^2\delta _{1}' + \delta _{1}'^3 \right) }{\cos {\delta _{1}}\sin {\beta _{1}}}. \end{aligned}$$
(43)

In the previous equations, another spherical angle (\(\beta (x)_1\) in Fig. 2) is introduced together with its derivatives. They can be computed using Eq. 44:

$$\begin{aligned} \left\{ \begin{array}{llll} \beta _{1} = \arccos {\left( \sin {\alpha _{1}} \cos (\psi x)\right) }\\ \beta _{1}' = \psi \sin {\alpha _{1}}\frac{\sin {(\psi x)}}{\sin {\beta _{1}}}\\ \beta _{1}'' = \frac{\psi ^2\sin {\alpha _{1}}\cos {(\psi x)} - \cos {\beta _{1}\beta _{1}'^2}}{\sin {\beta _{1}}}\\ \beta _{1}''' = \frac{-\psi ^3\sin {\alpha _{1}}\sin {(\psi x)} - 3\beta _{1}'\beta _{1}''\cos {\beta _{1}} + \beta _{1}'^3\sin {\beta _{1}}}{\sin {\beta _{1}}}\\ \end{array} \right. \end{aligned}$$
(44)

\(\varDelta L_1(x)\) is fundamental to compute the Longitude (6th MEE) on the initial orbit at each x and, as a consequence, the attractor distance from the attractor on the departure orbit as function of x; it can be computed with Eqs. 45 and  46:

$$\begin{aligned}&\left\{ \begin{array}{lll} \sin {\left( \varDelta L_{1}\right) } = \frac{1}{\sin {\alpha _{1}}}\sin {\delta _{1}} \\ \cos {\left( \varDelta L_{1}\right) } = \cos {(\psi x)}\cos {\delta _{1}} \\ \end{array} \right. \end{aligned}$$
(45)
$$\begin{aligned}&\left\{ \begin{array}{lll} \varDelta L_{1}' = \frac{\delta _{1}'}{\sin {\alpha _{1}}\cos {(\psi x)}}\\ \varDelta L_{1}'' = \frac{\delta _{1}'' + \psi \sin {\alpha _{1}}\sin {(\psi x)}\varDelta L_{1}'}{\sin {\alpha _{1}}\cos {(\psi x)}}\\ \varDelta L_{1}''' = \frac{\delta _{1}''' + 2\psi \sin {\alpha _{1}}\sin {(\psi x)}\varDelta L_{1}'' + \psi ^2\sin {\alpha _{1}}\cos {(\psi x)}\varDelta L_{1}'}{\sin {\alpha _{1}}\cos {(\psi x)}}\\ \end{array} \right. \end{aligned}$$
(46)

1.2 A.2 Target orbit

The inclination of the arrival orbit with respect to the reference plane can be computed as in Eq. 47:

$$\begin{aligned} \left\{ \begin{array}{lll} \cos {\alpha _{2}} = \hat{\mathbf{h }}_{2} \cdot \hat{\mathbf{h }}_{REF}\\ \sin {\alpha _{2}} = \xi _{2} \root \of {1-\cos {\alpha _{2}}^2}\\ \begin{array}{ll} \xi _{2} = 1 \;\;\;\;\;\;\;\;\;\; if \;\;\;\; \mathbf{v} _{f} \cdot \hat{\mathbf{h }}_{REF} < 0 \\ \xi _{2} = -1 \;\;\;\;\;\;\;\;\;\; if \;\;\;\; \mathbf{v} _{f} \cdot \hat{\mathbf{h }}_{REF} > 0 \\ \end{array} \end{array} \right. \end{aligned}$$
(47)

The declination (\(\delta (x)_2\)) of the arrival orbit over the reference plane can be computed using Eq. 48, while its derivatives can be computed using Eqs. 49,  50 and  51:

$$\begin{aligned} \sin {\delta _{2}}= & {} \sin {\alpha _{2}}\frac{\sin \left( \psi \left( 1- x\right) \right) }{\sin {\beta _{2}}} \end{aligned}$$
(48)
$$\begin{aligned} \delta _{2}'= & {} \frac{-\psi \sin {\alpha _{2}} \cos {(\psi (1- x))} - \beta _{2}'\cos {\beta _{2}}\sin {\delta _{2}}}{\cos {\delta _{2}}\sin {\beta _{2}}} \end{aligned}$$
(49)
$$\begin{aligned} \delta _{2}''= & {} \frac{-\psi ^2\sin {\alpha _{2}\sin {(\psi (1- x))}} + \sin {\beta _{2}}\sin {\delta _{2}}\left( \delta _{2}'^{2} + \beta _{2}'^{2} \right) }{\cos {\delta _{2}}\sin {\beta _{2}}} +\nonumber \\&- \frac{2\delta _{2}'\beta _{2}'\cos {\delta _{2}}\cos {\beta _{2}} + \beta _{2}''\sin {\delta _{2}}\cos {\beta _{2}}}{\cos {\delta _{2}}\sin {\beta _{2}}} \end{aligned}$$
(50)
$$\begin{aligned} \delta _{2}'''= & {} \frac{\psi ^3\sin {\alpha _{2}\cos {(\psi (1- x)}} + \sin {\beta _{2}}\sin {\delta _{2}} \left( 3\delta _{2}'\delta _{2}'' + 3\beta _{2}'\beta _{2}'' \right) }{\cos {\delta _{2}}\sin {\beta _{2}}}\nonumber \\&+\cos {\beta _{2}}\frac{\cos {\delta _{2}} \left( 3\delta _{2}'\delta _{2}'' + 3\beta _{2}'\beta _{2}'' \right) +\sin {\delta _{2}} \left( 3\delta _{2}'^{2}\beta _{2}' + \beta _{2}'^{3}-\beta _{2}''' \right) }{\cos {\delta _{2}}\sin {\beta _{2}}}\nonumber \\&+\frac{\sin {\beta _{2}}\cos {\delta _{2}} \left( 3\beta _{2}'^2\delta _{2}' + \delta _{2}'^3 \right) }{\cos {\delta _{2}}\sin {\beta _{2}}} \end{aligned}$$
(51)

In the previous equations, another spherical angle (\(\beta (x)_2\) in Fig. 2) is introduced together with its derivatives. They can be computed using Eq. 52:

$$\begin{aligned} \left\{ \begin{array}{llll} \beta _{2} = \arccos {\left( \sin {\alpha _{2}} \cos (\psi (1- x))\right) }\\ \beta _{2}' = -\psi \sin {\alpha _{2}}\frac{\sin {(\psi (1- x))}}{\sin {\beta _{2}}}\\ \beta _{2}'' = \frac{-\psi ^2\sin {\alpha _{2}}\cos {(\psi (1- x))} - \cos {\beta _{2}\beta _{2}'^2}}{\sin {\beta _{2}}}\\ \beta _{2}''' = \frac{\psi ^3\sin {\alpha _{2}}\sin {(\psi (1- x))} - 3\beta _{2}'\beta _{2}''\cos {\beta _{2}} + \beta _{2}'^3\sin {\beta _{2}}}{\sin {\beta _{2}}} \end{array} \right. \end{aligned}$$
(52)

The angle \(\varDelta L_2(x)\) is fundamental to compute the Longitude (6th MEE) on the arrival orbit at each x and so the attractor distance of the arrival orbit as function of x; it can be computed with Eqs. 53 and  54:

$$\begin{aligned}&\left\{ \begin{array}{ll} \sin {\left( \varDelta L_{2}\right) } = \frac{1}{\sin {\alpha _{2}}}\sin {\delta _{2}} \\ \cos {\left( \varDelta L_{2}\right) } = \cos {\left( \psi (1- x)\right) }\cos {\delta _{2}} \\ \end{array} \right. \end{aligned}$$
(53)
$$\begin{aligned}&\left\{ \begin{array}{lll} \varDelta L_{2}' = \frac{\delta _{2}'}{\sin {\alpha _{2}}\cos {(\psi (1- x))}}\\ \varDelta L_{2}'' = \frac{\delta _{2}'' - \psi \sin {\alpha _{2}}\sin {(\psi (1- x))}\varDelta L_{2}'}{\sin {\alpha _{2}}\cos {(\psi (1- x))}}\\ \varDelta L_{2}''' = \frac{\delta _{2}''' + 2\psi \sin {\alpha _{2}}\sin {(\psi (1- x))}\varDelta L_{2}'' + \psi ^2\sin {\alpha _{2}}\cos {(\psi (1- x))}\varDelta L_{2}'}{\sin {\alpha _{2}}\cos {(\psi (1- x))}}\\ \end{array} \right. \end{aligned}$$
(54)

1.3 A.3 Attractor distances

To compute the attractor distance, the longitude at each position x on the initial and final orbits using Eqs. 55 and  56 has to be computed first:

$$\begin{aligned}&\left\{ \begin{array}{ll} l_{1}(x) = L_{1} + \varDelta L_{1}(x)\\ l_{1}'(x) = \varDelta L_{1}'(x)\\ \end{array} \right. \end{aligned}$$
(55)
$$\begin{aligned}&\left\{ \begin{array}{ll} l_{2}(x) = L_{2} - \varDelta L_{2}(x)\\ l_{2}'(x) = -\varDelta L_{2}'(x)\\ \end{array} \right. \end{aligned}$$
(56)

The attractor distance on the initial and final orbits can be computed using Eq. 57:

$$\begin{aligned} \left\{ \begin{array}{llll} s_{i}(x) = \frac{p_i}{q_{i}(x)}\\ s_{i}(x)' = -\frac{p_{i}q_{i}'}{q_{i}^2}\\ s_{i}(x)'' = 2\frac{p_{i}q_{i}'^2}{q_{i}^3} - \frac{p_{i}q_{i}''}{q_{i}^2}\\ s_{i}(x)''' = -6\frac{p_{i}q_{i}'^3}{q_{i}^4} +6 \frac{p_{i}q_{i}'q_{i}''}{q_{i}^3} -\frac{p_{i}q_{i}'''}{q_{i}^2}\\ \end{array} \right. \end{aligned}$$
(57)

The q term appears with its derivatives; it can be computed using Eq. 58:

$$\begin{aligned} \left\{ \begin{array}{llll} q_{i}(x) = 1+f_{i}\cos {l_{i}(x)} + g_{i}\sin {l_{i}(x)}\\ q_{i}(x)' = \left( -f_{i}\sin {l_{i}} + g_{i}\cos {l_{i}} \right) \varDelta L_{i}'\\ q_{i}(x)'' = \left( 1-q_{i}\right) \varDelta L_{i}'^2 + q_{i}'\frac{\varDelta L_{i}''}{\varDelta L_{i}'^2}\\ q_{i}(x)''' = -q_{i}'\varDelta L_{i}'^2 + 3\left( 1-q_{i}\right) \varDelta L_{i}'\varDelta L_{i}'' + q_{i}'\frac{\varDelta L_{i}'''}{\varDelta L_{i}'}\\ \end{array} \right. \end{aligned}$$
(58)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prinetto, J., Lavagna, M. Elliptical shape-based model for multi-revolution planeto-centric mission scenarios. Celest Mech Dyn Astr 133, 3 (2021). https://doi.org/10.1007/s10569-020-10001-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10569-020-10001-9

Keywords

Navigation