Skip to main content
Log in

The Shannon entropy as a measure of diffusion in multidimensional dynamical systems

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

In the present work, we introduce two new estimators of chaotic diffusion based on the Shannon entropy. Using theoretical, heuristic and numerical arguments, we show that the entropy, S, provides a measure of the diffusion extent of a given small initial ensemble of orbits, while an indicator related with the time derivative of the entropy, \(S'\), estimates the diffusion rate. We show that in the limiting case of near ergodicity, after an appropriate normalization, \(S'\) coincides with the standard homogeneous diffusion coefficient. The very first application of this formulation to a 4D symplectic map and to the Arnold Hamiltonian reveals very successful and encouraging results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Figure taken from Cincotta et al. (2018)

Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. Let us recall that Shannon entropy for a discrete-valued and discrete-time stochastic process has an analog in ergodic theory of dynamical systems; the Shannon entropy defined in (10) naturally leads to the so-called metric or Kolmogrov Sinai entropy for a given orbit of a map when considering the refinements of the partition generated by the map when \(t\rightarrow \infty \), as for instance Arnol’d and Avez (1989) and Lesne (2014) show.

  2. Note that to compute \(\langle \delta {y^2_j}\rangle \) the actions are not restricted to the unit square.

  3. The estimation of the exponent \(\beta \) and the corresponding diffusion coefficient by a power law fit seems not to work when dealing with such finite times, the value of \(\beta \) being highly sensitive to both the total motion time and \(\varDelta t\) (see however next section).

  4. Note that their intersections in action space is different.

  5. It is well known that the theoretical diffusion rate depends exponentially on \(-1/\sqrt{V_{mn}}\) where \(V_{mn}\) stands for the amplitude of the above considered resonances.

References

  • Arnold, V.I.: On the nonstability of dynamical systems with many degrees of freedom. Sov. Math. Dokl. 5, 581–585 (1964)

    Google Scholar 

  • Arnol’d, V., Avez, A.: Ergodic Problems of Classical Mechanics, 2nd edn. Addison-Wesley, New York (1989)

    MATH  Google Scholar 

  • Batygin, K., Deck, K.M., Holman, M.J.: Dynamical evolution of multi-resonant systems: the case of GJ876. Astron. J. 149, 167 (2015)

    Article  ADS  Google Scholar 

  • Cachucho, F., Cincotta, P.M., Ferraz-Mello, S.: Chirikov diffusion in the asteroidal three-body resonance \((5, -2, -2)\). Celest. Mech. Dyn. Astron. 108, 35 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Chandrasekhar, S.: Stochastic problems in physics and astronomy. Rev. Mod. Phys. 15, 1 (1943)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Chirikov, B.V.: A universal instability of many-dimensional oscillator systems. Phys. Rep. 52, 263 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  • Cincotta, P.M.: Astronomical time-series analysis-III. The role of the observational errors in the minimum entropy method. Mon. Not. R. Astron. Soc. 307, 941 (1999)

    Article  ADS  Google Scholar 

  • Cincotta, P.M.: Arnold diffusion: an overview through dynamical astronomy. New Astron. Rev. 46, 13–39 (2002)

    Article  ADS  Google Scholar 

  • Cincotta, P.M., Giordano, C.M.: Chaotic diffusion in multidimensional conservative maps. Int. J. Bifurc. Chaos 22, 10 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Cincotta, P.M., Giordano, C.M.: Theory and applications of the Mean Exponential Growth Factor of Nearby Orbits (MEGNO) method. Lect. Notes Phys. 915, 93 (2016)

    Article  Google Scholar 

  • Cincotta, P.M., Simó, C.: Conditional entropy. Celest. Mech. Dyn. Astron. 73, 195 (1999)

    Article  ADS  MATH  Google Scholar 

  • Cincotta, P.M., Simó, C.: Simple tools to study global dynamics in non-axisymmetric galactic potentials-I. Astron. Astrophys. Suppl. Ser. 147, 205 (2000)

    Article  ADS  Google Scholar 

  • Cincotta, P.M., Helmi, A., Méndez, M., Núñez, J.A., Vucetich, H.: Astronomical time-series analysis-II. A search for periodicity using the Shannon entropy. Mon. Not. R. Astron. Soc. 302, 582 (1999)

    Article  ADS  Google Scholar 

  • Cincotta, P.M., Giordano, C.M., Simó, C.: Phase space structure of multi-dimensional systems by means of the mean exponential growth factor of nearby orbits. Physica D 182, 11 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Cincotta, P.M., Efthymiopoulos, C., Giordano, C.M., Mestre, M.F.: Chirikov and Nekhoroshev diffusion estimates: bridging the two sides of the river. Physica D 266, 49 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Cincotta, P.M., Giordano, C.M., Martí, J.G., Beaugé, C.: On the chaotic diffusion in multidimensional Hamiltonian systems. Celest. Mech. Dyn. Astron. 130(1), 7 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Cordeiro, R.R.: Anomalous diffusion in the asteroid belt. Astron. J. 132, 2114 (2006)

    Article  ADS  Google Scholar 

  • Cordeiro, R., Mendes de Souza, L.: Anomalous diffusion in the first-order Jovian resonance. Astron. Astrophys. 439, 375 (2005)

    Article  ADS  Google Scholar 

  • Efthymiopoulos, C.: Canonical perturbation theory, stability and diffusion in Hamiltonian systems: applications in dynamical astronomy. In: Cincotta, P.M., Giordano, C.M., Efthymiopoulos, C. (eds.) Third La Plata International School on Astronomy and Geophysics: Chaos, Diffusion and Non-integrability in Hamiltonian Systems Applications to Astronomy (2012)

  • Efthymiopoulos, C., Harsoula, M.: The speed of Arnold diffusion. Physica D 251, 19 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Fick, A.: Ueber diffusion. Ann. Phys. 95, 59 (1855). in German

    Article  Google Scholar 

  • Froeschlé, C., Guzzo, M., Lega, E.: Local and global diffusion along resonant lines in discrete quasi-integrable dynamical systems. Celest. Mech. Dyn. Astron. 92, 243 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Froeschlé, C., Lega, E., Guzzo, M.: Analysis of the chaotic behavior of orbits diffusing along the Arnold web. Celest. Mech. Dyn. Astron. 95, 141 (2006)

    Article  ADS  MATH  Google Scholar 

  • Giorgilli, A.: New insights on the stability problem from recent results in classical perturbation theory. In: Benest, D., Froeschlé, C., (eds.) Les Methodes Modernes de la Mecanique Celeste. Frontières, pp. 249–284. ISBN: 2-8633209-2 (1990)

  • Katz, A.: Principles of Statistical Mechanics, The Information Theory Approach. W.H. Freeman & Co., San Francisco (1967)

    Google Scholar 

  • Klafter, J., Blumen, A., Zumofen, G., Shlesinger, M.: Lévy walk approach to anomalous diffusion. Physica A 168, 637 (1990)

    Article  ADS  Google Scholar 

  • Klafter, J., Zumofen, G., Shlesinger, M.: Lévy walks in dynamical systems. Physica A 200, 222 (1993)

    Article  ADS  MATH  Google Scholar 

  • Korabel, N., Klages, R.: Microscopic chaos and transport in many-particle systems. Physica D 187, 66 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Lega, E., Guzzo, M., Froeschlé, C.: Detection of Arnold diffusion in Hamiltonian systems. Physica D 182, 179 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Lega, E., Froeschlé, C., Guzzo, M.: Diffusion in Hamiltonian quasi-integrable systems. Lect. Notes Phys. 729, 29 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Lesne, A.: Shannon entropy: a rigorous notion at the crossroads between probability, information theory, dynamical systems and statistical physics. Math. Struct. Comput. Sci. 24, e240311 (2014). https://doi.org/10.1017/S0960129512000783

    Article  MathSciNet  MATH  Google Scholar 

  • Maffione, N.P., Gómez, F.A., Cincotta, P.M., Giordano, C.M., Cooper, A.P., O’ Shea, B.W.: On the relevance of chaos for halo stars in the solar neighbourhood. Mon. Not. R. Astron. Soc. 453, 2830 (2015)

    Article  ADS  Google Scholar 

  • Maffione, N.P., Gómez F.A., Cincotta, P.M., Giordano, C.M., Grand, R., Marinacci, F., et al.: On the relevance of chaos for halo stars in the solar neighbourhood II. Mon. Not. R. Astron. Soc. arXiv:1801.03946 (2018)

  • Martí, J.G., Cincotta, P.M., Beaugé, C.: Chaotic diffusion in the Gliese-876 planetary system. Mon. Not. R. Astron. Soc. 460, 1094 (2016)

    Article  ADS  Google Scholar 

  • Miguel, N., Simó, C., Vieiro, A.: On the effect of islands in the diffusive properties of the standard map, for large parameter values. Found. Comput. Math. 15, 89 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Tsiganis, K.: Chaotic diffusion of asteroids. Lect. Notes Phys. 729, 111 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Tsiganis, K., Varvoglis, H., Dvorak, R.: Chaotic diffusion and effective stability of Jupiter Trojans. Celest. Mech. Dyn. Astron. 92, 71 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Simó, C.: Global dynamics and fast indicators. In: Broer, H.W., Krauskopf, B., Vegter, G. (eds.) Global Analysis of Dynamical Systems, pp. 373–390. IOP Publishing, Bristol (2001)

    Google Scholar 

  • Shannon, C., Weaver, W.: The Mathematical Theory of Communication. Illinois U.P., Urbana (1949)

    MATH  Google Scholar 

  • Schwarzl, M., Godec, A., Metzler, R.: Quantifying non-ergodicity of anomalous diffusion with higher order moments. Sci. Rep. (2017). https://doi.org/10.1038/s41598-017-03712-x

    Google Scholar 

  • Venegeroles, R.: Calculation of superdiffusion for the Chirikov–Taylor model. Phys. Rev. Lett. 101, 54102 (2008)

    Article  ADS  Google Scholar 

  • Wehrl, A.: General properties of entropy. Rev. Mod. Phys. 50(2), 221 (1978)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Zaslavsky, G.M.: Fractional kinetic equation for Hamiltonian chaos. Physica D 76, 110 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Phys. Rep. 371, 461 (2002a)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Zaslavsky, G.M.: Dynamical traps. Physica D 168–169, 292 (2002b)

    Article  MathSciNet  MATH  Google Scholar 

  • Zaslavsky, G.M., Abdullaev, S.S.: Scaling properties and anomalous transport of particles inside the stochastic layer. Phys. Rev. E 51, 3901 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  • Zaslavsky, G.M., Edelman, M.: Hierarchical structures in the phase space and fractional kinetics: I. Classical systems. Chaos 10, 135 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Zaslavsky, G.M., Niyazow, B.A.: Fractional kinetics and accelerator modes. Phys. Rep. 283, 73 (1997)

    Article  ADS  Google Scholar 

  • Zaslavsky, G.M., Edelman, M., Niyazow, B.A.: Self-similarity, renormalization, and phase space nonuniformity of Hamiltonian chaotic dynamics. Chaos 7, 159 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Zhou, J., Sun, Y., Zhou, L.: Evidence for Lévy random walks in the evolution of comets from the Oort cloud. Celest. Mech. Dyn. Astron. 84, 409 (2002)

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina (CONICET), the Universidad Nacional de La Plata and Instituto de Astrofísica de La Plata. We acknowledge two anonymous reviewers for the valuable comments and suggestions that allow us to improve this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. M. Cincotta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giordano, C.M., Cincotta, P.M. The Shannon entropy as a measure of diffusion in multidimensional dynamical systems. Celest Mech Dyn Astr 130, 35 (2018). https://doi.org/10.1007/s10569-018-9832-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10569-018-9832-x

Keywords

Navigation