Skip to main content
Log in

The use of invariant manifolds for transfers between unstable periodic orbits of different energies

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

Techniques from dynamical systems theory have been applied to the construction of transfers between unstable periodic orbits that have different energies. Invariant manifolds, trajectories that asymptotically depart or approach unstable periodic orbits, are used to connect the initial and final orbits. The transfer asymptotically departs the initial orbit on a trajectory contained within the initial orbit’s unstable manifold and later asymptotically approaches the final orbit on a trajectory contained within the stable manifold of the final orbit. The manifold trajectories are connected by the execution of impulsive maneuvers. Two-body parameters dictate the selection of the individual manifold trajectories used to construct efficient transfers. A bounding sphere centered on the secondary, with a radius less than the sphere of influence of the secondary, is used to study the manifold trajectories. A two-body parameter, κ, is computed within the bounding sphere, where the gravitational effects of the secondary dominate. The parameter κ is defined as the sum of two quantities: the difference in the normalized angular momentum vectors and eccentricity vectors between a point on the unstable manifold and a point on the stable manifold. It is numerically demonstrated that as the κ parameter decreases, the total cost to complete the transfer decreases. Preliminary results indicate that this method of constructing transfers produces a significant cost savings over methods that do not employ the use of invariant manifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Belbruno E.A., Marsden B.G.: Resonance hopping in comets. Astron. J. 113(4), 1433–1444 (1997)

    Article  ADS  Google Scholar 

  • Bray, T.A., Goudas, C.L.: Doubly-symmetric orbits about the collinear lagrange points. Astron. J. 72(2), March (1967)

  • Breakwell J.V., Brown J.V.: The halo family of 3-dimensional periodic orbits in the Earth–Moon restricted 3-body problem. Celest. Mech. 20, 389–404 (1979)

    Article  MATH  ADS  Google Scholar 

  • Broschart, S., Chung, M., Hatch, S., Ma, J., Sweetser, T., Weinstein-Weiss, S., Angelopoulos, V.: Preliminary trajectory design for the Artemis Lunar Mission. In: Astrodynamics Specialist Conference, Number AAS 09-382. Pittsburgh, Pennsylvania, August 9–13 (2009)

  • Broucke, R.A.: Periodic orbits in the restricted three-body problem with Earth–Moon masses, Technical Report 32-1168, Jet Propulsion Laboratory, Cal. Tech. (1968)

  • Conley C.: Low energy transit orbits in the restricted three body problem. SIAM J. Appl. Math. 16(4), 732–746 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  • Darwin G.H.: Periodic orbits. Acta Math. 21, 99–242 (1897)

    Article  MathSciNet  Google Scholar 

  • Dunham D.W., Farquhar R.W.: Libration point missions, 1978–2002. In: Gómez, G., Lo, M.W., Masdemont, J.J. Libration Point Orbits and Applications: Proceedings of the Conference, World Scientific Publishing Company, Aiguablava, Spain (2003)

  • Farquhar R.W., Kamel A.A.: Quasi-periodic orbits about the translunar libration point. Celest. Mech. 7(4), 458–473 (1973)

    Article  MATH  ADS  Google Scholar 

  • Folta, D., Lowe, J.: Formation flying of a telescope/occulter system with large separations in an L2 libration orbit. In: 59th International Astronautical Congress, Number IAC-08-C1.6.2. Glasgow, Scotland, Sept 30 – Oct 3 (2008)

  • Gardner, J.P.: The James Webb Space Telescope. In: Large Telescopes and Virtual Observatory: Visions for the Future, 25th meeting of the IAU, Sydney, Australia, July (2003)

  • Gómez G., Jorba A., Llibre J., Martinez R., Masdemont J., Simó C.: Dynamics and Mission Design near Libration Points, vol. I–IV. World Scientific Publishing Co., Singapore (2001)

    Google Scholar 

  • Gómez G., Jorba A., Masdemont J., Simó C.: Study of the transfer between halo orbits. Acta Astronaut. 43, 493–520 (1998)

    Article  Google Scholar 

  • Gómez G., Koon W.S., Marsden J.E., Masdemont J., Ross S.D.: Connecting orbits and invariant manifolds in the spatial restricted three-body problem. Nonlinearity 17(5), 1571–1606 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Gómez, G., Masdemont, J.: Some zero cost transfers between libration point orbits. In: AAS/AIAA Spaceflight Mechanics Meeting, Number AAS 00-177. Clearwater, Florida, January (2000)

  • Grebow, D., Ozimek, M., Howell, K., Folta, D.: Multi-body orbit architectures for lunar south Pole Coverage. In: AIAA/AAS Astrodynamics Specialist Meeting, Number AAS 06-179, Tampa, Florida, 22–26 January (2006)

  • Hamera, K., Mosher, T., Gefreh, M., Paul, R., Slavkin, L., Trojan, J.: An evolvable lunar communication and navigation constellation concept. In: IEEE Aerospace Conference, Number IEEE 1491. Big Sky, Montana, 28 April–1 May (2008)

  • Hechler M., Cobos J.: Herschel, Planck and the Gaia Orbit Design. In: Gómez, G., Lo, M.W., Masdemont, J.J. (eds) Libration Point Orbits and Applications: Proceedings of the Conference., World Scientific Publishing Company, Aiguablava, Spain (2003)

  • Hénon M.: New families of periodic orbits in Hill’s problem of three bodies. Celest. Mech. Dyn. Astron. 85, 223–246 (2003)

    Article  MATH  ADS  Google Scholar 

  • Hill, K., Parker, J.S., Born, G.H., Demandante, N.: A lunar L2 navigation, communication, and gravity mission. In: AIAA/AAS Astrodynamics Specialist Conference, Number AIAA 2006-6662, Keystone, Colorado, August (2006)

  • Howell K.C.: Three-dimensional, periodic, ‘Halo’ Orbits. Celest. Mech. 32(1), 53–71 (1984)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Howell K.C., Hiday-Johnston L.A.: Time-free transfers between libration point orbits in the elliptic restricted problem. Acta Astronaut. 32, 245–254 (1994)

    Article  Google Scholar 

  • Koon W.S., Lo M.W., Marsden J.E., Ross S.D.: Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics. Chaos 10(2), 427–469 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Koon W.S., Lo M.W., Marsden J.E., Ross S.D.: Constructing a low energy transfer between Jovian Moons. Contemp. Math. 292, 129–145 (2002)

    MathSciNet  Google Scholar 

  • Lo, M.W., Parker, J.S.: Chaining simple periodic three-body orbits. In: AAS/AIAA Astrodynamics Specialist Conference, Number AAS 2005-380. Lake Tahoe, California, August 7–11 (2005)

  • Lo, M.W., Ross, S.: Surfing the solar system: invariant manifolds and the dynamics of the solar system. Technical Report IOM 312/97, 2-4. Jet Propulsion Laboratory (1998)

  • Lo M.W., Williams B.G., Bollman W.E., Han D.S., Hahn Y.S., Bell J.L., Hirst E.A., Corwin R.A., Hong P.E., Howell K.C., Barden B., Wilson R.: Genesis mission design. J. Astronaut. Sci. 49(1), 169–184 (2001)

    Google Scholar 

  • McGehee, R.P.: Some homoclinic orbits for the restricted three body problem, Ph.D. thesis, University of Wisconsin, Madison, Wisconsin, (1969)

  • Mingotti G., Topputo F., Bernelli-Zazzera F.: Low-energy, low-thrust transfers to the Moon. Celest. Mech. Dyn. Astron. 105, 61–74 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  • Moulton, F.R.: Periodic Orbits. Carnegie Institute of Washington Publications 161, (1920)

  • Parker J.S., Born G.H.: Modeling a low-energy Ballistic Lunar transfer using dynamical systems theory. J. Spacecr. Rockets 45(6), 1269–1281 (2008)

    Article  ADS  Google Scholar 

  • Parker T.S., Chua L.O.: Practical numerical algorithms for chaotic systems. Springer, New York (1989)

    MATH  Google Scholar 

  • Pergola P., Geurts K., Casaregola C., Andrenucci M.: Earth–Mars halo to halo low thrust manifold transfers. Celest. Mech. Dyn. Astron. 105(1–3), 19–32 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  • Richardson, D.L., Cary, N.D.: A uniformly valid solution for motion of the interior libration point for the perturbed elliptic-restricted problem. In: AIAA/AAS Astrodynamics Specialist Conference, Number AIAA 75-021, July (1975)

  • Russell R.P.: Global search for planar and three-dimensional periodic orbits near Europa. J. Astronaut. Sci. 54(2), 199–226 (2006)

    MathSciNet  Google Scholar 

  • Strogatz S.H.: Nonlinear Dynamics and Chaos. Perseus Books Publishing, L.L.C. (1994)

    Google Scholar 

  • Strömgren, E.: Connaissance actuelle des orbites dans le problème des trios corps. Copenhagen Observatory Publications, (100), also Bull. Astr. 9(87) (1935)

  • Szebehely V.: Theory of Orbits: The Restricted Problem of Three Bodies. Academic Press, New York (1967)

    Google Scholar 

  • Wilczak D., Zgliczyński P.: Heteroclinic connections between periodic orbits in planar restricted circular three body problem. Part II. Commun. Math. Phys. 259(3), 561–576 (2005)

    Article  MATH  ADS  Google Scholar 

  • Wilson, R.: Derivation of differential correctors used in GENESIS mission design, Technical Report JPL IOM 312.I-03-002, Jet Propulsion Laboratory (2003)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathryn E. Davis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davis, K.E., Anderson, R.L., Scheeres, D.J. et al. The use of invariant manifolds for transfers between unstable periodic orbits of different energies. Celest Mech Dyn Astr 107, 471–485 (2010). https://doi.org/10.1007/s10569-010-9285-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-010-9285-3

Keywords

Navigation