Skip to main content
Log in

Ferroptosis: From regulation of lipid peroxidation to the treatment of diseases

  • Review
  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

Ferroptosis is a regulated cell death mainly manifested by iron-dependent lipid peroxide accumulation. The leading cause of ferroptosis is the imbalance of intracellular oxidative systems (e.g., LOXs, POR, ROS) and antioxidant systems (e.g., GSH/GPx4, CoQ10/FSP1, BH4/GCH1), which is regulated by a complex network. In the past decade, this metabolic network has been continuously refined, and the links with various pathophysiological processes have been gradually established. Apoptosis has been regarded as the only form of regulated cell death for a long time, and the application of chemotherapeutic drugs to induce apoptosis of cancer cells is the mainstream method. However, studies have reported that cancer cells’ key features are resistance to apoptosis and chemotherapeutics. For high proliferation, cancer cells often have very active lipid metabolism and iron metabolism, which pave the way for ferroptosis. Interestingly, researchers found that drug-resistant or highly aggressive cancer cells are more prone to ferroptosis. Therefore, ferroptosis may be a potential strategy to eliminate cancer cells. In addition, links between ferroptosis and other diseases, such as neurological disorders and ischemia–reperfusion injury, have also been found. Understanding these diseases from the perspective of ferroptosis may provide new insights into clinical treatment. Herein, the metabolic processes in ferroptosis are reviewed, and the potential mechanisms and targets of ferroptosis in different diseases are summarized.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

GPx4:

Glutathione peroxidase 4

ACSL4:

Acyl-CoA synthetase long chain family member 4

LPCAT3:

Lysophosphatidylcholine acyltransferase 3

LOXs:

Lipoxygenases

GSH:

Glutathione

PUFA:

Polyunsaturated fatty acid

MUFA:

Monounsaturated fatty acid

PUFA-PLs:

Polyunsaturated phospholipids

AA:

Arachidonic acid

AdA:

Adrenoyl acid

NADPH:

Nicotinamide adenine dinucleotide phosphate

HMGB1:

High mobility group box 1

VDAC2/3:

Voltage dependent anion channel-3/2

NOX:

Nitrogen oxides

TFR1:

Transferrin receptor 1

LIP:

Labile iron pool

CARS:

Cysteinyl tRNA synthetase

SLC7A11:

Solute carrier family 7 member 11

HSPB1:

Heat shock protein family B (small) member 1

Nrf2:

Nuclear factor erythroid 2-related factor 2

ROS:

Reactive oxygen species

NCOA4:

Nuclear receptor coactivator 4

DMT1:

Divalent metal transporter 1

FPN1:

Ferroportin 1

OA:

Oleic acid

PA:

Palmitic acid

LA:

Linoleic acid

ALOXs:

Arachidonic acid lipoxygenases

G6PDH:

Glucose 6-phosphate dehydrogenase

GDH:

Glutamate dehydrogenase

PGDH:

6-Phosphogluconate dehydrogenase

SCP2:

Sterol carrier protein 2

DHA:

Docosahexaenoic acid

POR:

Cytochrome P450 reductase

CoQ10:

Coenzyme Q10

AMPK:

AMP-activated protein kinase

ACC:

Acetyl-CoA carboxylase

LKB1:

Serine/threonine-protein kinase 1

GLS:

Glutaminase

α-KG:

α-Ketoglutaric acid

OTUB1:

Ubiquitin aldehyde binding 1

GSSG:

Oxidized glutathione

AIFM2/FSP1:

Apoptosis inducing factor mitochondria associated 2

ESCRT-III:

Endosomal sorting complex

BH4 :

Tetrahydrobiopterin

GCH1:

GTP-cyclohydrolase 1

EMT:

Epithelial-mesenchymal transition

DAMPs:

Damage-associated molecular pattern

IRI:

Ischemia-reperfusion injury

References

  • Adedoyin O, Boddu R, Traylor A, Lever JM, Bolisetty S, George JF, et al. Heme oxygenase-1 mitigates ferroptosis in renal proximal tubule cells. Am J Physiol Renal Physiol. 2018;314(5):F702–14.

    Article  CAS  PubMed  Google Scholar 

  • Amaral EP, Costa DL, Namasivayam S, Riteau N, Kamenyeva O, Mittereder L, et al. A major role for ferroptosis in mycobacterium tuberculosis–induced cell death and tissue necrosis. J Exp Med. 2019;216(3):556–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amarante-Mendes GP, Adjemian S, Branco LM, Zanetti LC, Weinlich R, Bortoluci KR. Pattern recognition receptors and the host cell death molecular machinery. Front Immunol. 2018:2379.

  • Angeli JPF, Proneth B, Hammond VJ, Tyurina YY, Tyurin VA, ODonnell VB et al. Inactivation of the ferroptosis regulator gpx4 triggers acute renal failure in a therapeutically relevant mechanism. Free Radical Bio Med. 2014;(76):S77–78.

  • Anthonymuthu TS, Kenny EM, Lamade AM, Kagan VE, Bayır H. Oxidized phospholipid signaling in traumatic brain injury. Free Radical Bio Med. 2018;124:493–503.

    Article  CAS  Google Scholar 

  • Ashrafizadeh M, Zarrabi A, Hushmandi K, Hashemi F, Moghadam ER, Owrang M, et al. Lung cancer cells and their sensitivity/resistance to cisplatin chemotherapy: role of micrornas and upstream mediators. Cell Signal. 2021;78:109871.

    Article  CAS  PubMed  Google Scholar 

  • Barta JA, Powell CA, Wisnivesky JP. Global epidemiology of lung cancer. Ann Glob Health. 2019;85(1).

  • Bebber CM, Müller F, Prieto Clemente L, Weber J, von Karstedt S. Ferroptosis in cancer cell biology. Cancers. 2020;12(1).

  • Bekric D, Ocker M, Mayr C, Stintzing S, Ritter M, Kiesslich T, et al. Ferroptosis in hepatocellular carcinoma: mechanisms, drug targets and approaches to clinical translation. Cancers. 2022;14(7):1826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berardelli A, Noth J, Thompson PD, Bollen EL, Currà A, Deuschl G, et al. Pathophysiology of chorea and bradykinesia in huntington’s disease. Mov Disord. 1999;14(3):398–403.

    Article  CAS  PubMed  Google Scholar 

  • Bersuker K, Hendricks JM, Li Z, Magtanong L, Ford B, Tang PH, et al. The coq oxidoreductase fsp1 acts parallel to gpx4 to inhibit ferroptosis. Nature. 2019;575(7784):688–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bharath S, Hsu M, Kaur D, Rajagopalan S, Andersen JK. Glutathione, iron and parkinson’s disease. Biochem Pharmacol. 2002;64(5–6):1037–48.

    Article  CAS  PubMed  Google Scholar 

  • Boller T, Felix G. A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol. 2009;60:379–406.

    Article  CAS  PubMed  Google Scholar 

  • Bonen A, Chabowski A, Luiken JJ, Glatz JF. Is membrane transport of FFA mediated by lipid, protein, or both? Mechanisms and regulation of protein-mediated cellular fatty acid uptake: molecular, biochemical, and physiological evidence. Physiology (Bethesda). 2007;22:15–29.

  • Brabletz T. Emt and met in metastasis: where are the cancer stem cells? Cancer Cell. 2012;22(6):699–701.

    Article  CAS  PubMed  Google Scholar 

  • Brown CW, Amante JJ, Chhoy P, Elaimy AL, Liu H, Zhu LJ, et al. Prominin2 drives ferroptosis resistance by stimulating iron export. Dev Cell. 2019;51(5):575–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao JY, Dixon SJ. Mechanisms of ferroptosis. Cell Mol Life Sci. 2016;73(11):2195–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan W, Taylor AJ, Ellims AH, Lefkovits L, Wong C, Kingwell BA et al. Effect of iron chelation on myocardial infarct size and oxidative stress in st-elevation–myocardial infarction. Circulation. 2012;5(2):270–78.

  • Chen H, Zheng C, Zhang Y, Chang Y, Qian Z, Shen X. Heat shock protein 27 downregulates the transferrin receptor 1-mediated iron uptake. Int J Biochem Cell Biol. 2006;38(8):1402–16.

    Article  CAS  PubMed  Google Scholar 

  • Chen K, Zhang S, Jiao J, Zhao S. Ferroptosis and its potential role in lung cancer: updated evidence from pathogenesis to therapy. J Inflamm Res. 2021a;14:7079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Kang R, Kroemer G, Tang D. Broadening horizons: the role of ferroptosis in cancer. Nat Rev Clin Oncol. 2021b;18(5):280–96.

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Kang R, Kroemer G, Tang D. Ferroptosis in infection, inflammation, and immunity. J Exp Med. 2021c;218(6):e20210518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Kang R, Kroemer G, Tang D. Targeting ferroptosis in pancreatic cancer: a double-edged sword. Trends Cancer. 2021d;7(10):891–901.

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Yu C, Kang R, Kroemer G, Tang D. Cellular degradation systems in ferroptosis. Cell Death Differ. 2021e;28(4):1135–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen GM. Caspases: the executioners of apoptosis. Biochem J. 1997;326(Pt 1)(Pt 1):1–16.

  • Cosialls E, El Hage R, Dos Santos L, Gong C, Mehrpour M, Hamaï A. Ferroptosis: cancer stem cells rely on iron until “to die for” it. Cells-Basel. 2021;10(11):2981.

    Article  CAS  Google Scholar 

  • Courtney KD, Ma Y, de Leon AD, Christie A, Xie Z, Woolford L, et al. Hif-2 complex dissociation, target inhibition, and acquired resistance with pt2385, a first-in-class hif-2 inhibitor, in patients with clear cell renal cell carcinoma. Clin Cancer Res. 2020;26(4):793–803.

    Article  CAS  PubMed  Google Scholar 

  • Crane FL. Biochemical functions of coenzyme q10. J Am Coll Nutr. 2001;20(6):591–8.

    Article  CAS  PubMed  Google Scholar 

  • Dabkowski ER, Williamson CL, Hollander JM. Mitochondria-specific transgenic overexpression of phospholipid hydroperoxide glutathione peroxidase (gpx4) attenuates ischemia/reperfusion-associated cardiac dysfunction. Free Radic Bio Med. 2008;45(6):855–65.

    Article  CAS  Google Scholar 

  • Dai E, Zhang W, Cong D, Kang R, Wang J, Tang D. Aifm2 blocks ferroptosis independent of ubiquinol metabolism. Biochem Biophys Res Commun. 2020;523(4):966–71.

    Article  CAS  PubMed  Google Scholar 

  • Dar HH, Tyurina YY, Mikulska-Ruminska K, Shrivastava I, Ting H, Tyurin VA, et al. Pseudomonas aeruginosa utilizes host polyunsaturated phosphatidylethanolamines to trigger theft-ferroptosis in bronchial epithelium. J Clin Investig. 2019;128(10):4639–53.

    Article  Google Scholar 

  • Das UN. Saturated fatty acids, mufas and pufas regulate ferroptosis. Cell Chem Biol. 2019;26(3):309–11.

    Article  CAS  PubMed  Google Scholar 

  • Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149(5):1060–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dixon SJ, Stockwell BR. The role of iron and reactive oxygen species in cell death. Nat Chem Biol. 2014;10(1):9–17.

    Article  CAS  PubMed  Google Scholar 

  • Doll S, Conrad M. Iron and ferroptosis: a still ill-defined liaison. IUBMB Life. 2017;69(6):423–34.

    Article  CAS  PubMed  Google Scholar 

  • Doll S, Proneth B, Tyurina YY, Panzilius E, Kobayashi S, Ingold I, et al. Acsl4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol. 2017;13(1):91–8.

    Article  CAS  PubMed  Google Scholar 

  • Doll S, Freitas FP, Shah R, Aldrovandi M, Da Silva MC, Ingold I, et al. Fsp1 is a glutathione-independent ferroptosis suppressor. Nature. 2019;575(7784):693–8.

    Article  CAS  PubMed  Google Scholar 

  • Dolma S, Lessnick SL, Hahn WC, Stockwell BR. Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer Cell. 2003;3(3):285–96.

    Article  CAS  PubMed  Google Scholar 

  • Donovan A, Lima CA, Pinkus JL, Pinkus GS, Zon LI, Robine S, et al. The iron exporter ferroportin/slc40a1 is essential for iron homeostasis. Cell Metab. 2005;1(3):191–200.

    Article  CAS  PubMed  Google Scholar 

  • Dunn LL, Rahmanto YS, Richardson DR. Iron uptake and metabolism in the new millennium. Trends Cell Biol. 2007;17(2):93–100.

    Article  CAS  PubMed  Google Scholar 

  • Fan Z, Cai L, Wang S, Wang J, Chen B. Baicalin prevents myocardial ischemia/reperfusion injury through inhibiting acsl4 mediated ferroptosis. Front Pharmacol. 2021;12:628988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang X, Wang H, Han D, Xie E, Yang X, Wei J, et al. Ferroptosis as a target for protection against cardiomyopathy. Proc Natl Acad Sci. 2019;116(7):2672–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng J, Lu P, Zhu G, Hooi SC, Wu Y, Huang X, et al. Acsl4 is a predictive biomarker of sorafenib sensitivity in hepatocellular carcinoma. Acta Pharmacol Sin. 2021;42(1):160–70.

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Fernandez S, Almeida A, Bolaños JP. Antioxidant and bioenergetic coupling between neurons and astrocytes. Biochem J. 2012;443(1):3–11.

    Article  CAS  PubMed  Google Scholar 

  • Figueroa-González G, Carrillo-Hernández JF, Perez-Rodriguez I, Cantú De León D, Campos-Parra AD, Martínez-Gutiérrez AD et al. Negative regulation of serine threonine kinase 11 (stk11) through mir-100 in head and neck cancer. Genes-Basel. 2020;11(9):1058.

  • Forcina GC, Dixon SJ. Gpx4 at the crossroads of lipid homeostasis and ferroptosis. Proteomics. 2019;19(18):1800311.

    Article  Google Scholar 

  • Friedmann Angeli JP, Schneider M, Proneth B, Tyurina YY, Tyurin VA, Hammond VJ, et al. Inactivation of the ferroptosis regulator gpx4 triggers acute renal failure in mice. Nat Cell Biol. 2014;16(12):1180–91.

    Article  CAS  PubMed  Google Scholar 

  • Gagliardi M, Cotella D, Santoro C, Corà D, Barlev NA, Piacentini M, et al. Aldo-keto reductases protect metastatic melanoma from er stress-independent ferroptosis. Cell Death Dis. 2019;10(12):1–15.

    Article  Google Scholar 

  • Gao M, Monian P, Quadri N, Ramasamy R, Jiang X. Glutaminolysis and transferrin regulate ferroptosis. Mol Cell. 2015;59(2):298–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaschler MM, Stockwell BR. Lipid peroxidation in cell death. Biochem Biophys Res Commun. 2017;482(3):419–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grynberg K, Ozols E, Mulley WR, Davis RJ, Flavell RA, Nikolic-Paterson DJ, et al. Jun amino-terminal kinase 1 signaling in the proximal tubule causes cell death and acute renal failure in rat and mouse models of renal ischemia/reperfusion injury. Am J Pathol. 2021;191(5):817–28.

    Article  CAS  PubMed  Google Scholar 

  • Guan X, Li X, Yang X, Yan J, Shi P, Ba L, et al. The neuroprotective effects of carvacrol on ischemia/reperfusion-induced hippocampal neuronal impairment by ferroptosis mitigation. Life Sci. 2019;235:116795.

    Article  CAS  PubMed  Google Scholar 

  • Guan X, Li Z, Zhu S, Cheng M, Ju Y, Ren L, et al. Galangin attenuated cerebral ischemia-reperfusion injury by inhibition of ferroptosis through activating the slc7a11/gpx4 axis in gerbils. Life Sci. 2021;264:118660.

    Article  CAS  PubMed  Google Scholar 

  • Guiney SJ, Adlard PA, Bush AI, Finkelstein DI, Ayton S. Ferroptosis and cell death mechanisms in parkinson’s disease. Neurochem Int. 2017;104:34–48.

    Article  CAS  PubMed  Google Scholar 

  • Hambright WS, Fonseca RS, Chen L, Na R, Ran Q. Ablation of ferroptosis regulator glutathione peroxidase 4 in forebrain neurons promotes cognitive impairment and neurodegeneration. Redox Biol. 2017;12:8–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamilton DL, Wedner HJ. The role of glutathione in lymphocyte activation. I. Comparison of inhibitory effects of buthionine sulfoximine and 2-cyclohexene-1-one by nuclear size transformation. J Immunol. 1985;135(4):2740–47.

  • Han A, Purwin TJ, Aplin AE. Roles of the bap1 tumor suppressor in cell metabolism. Cancer Res. 2021;81(11):2807–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hangauer MJ, Viswanathan VS, Ryan MJ, Bole D, Eaton JK, Matov A, et al. Drug-tolerant persister cancer cells are vulnerable to gpx4 inhibition. Nature. 2017;551(7679):247–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanson LR, Roeytenberg A, Martinez PM, Coppes VG, Sweet DC, Rao RJ, et al. Intranasal deferoxamine provides increased brain exposure and significant protection in rat ischemic stroke. J Pharmacol Exp Ther. 2009;330(3):679–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hao S, Yu J, He W, Huang Q, Zhao Y, Liang B, et al. Cysteine dioxygenase 1 mediates erastin-induced ferroptosis in human gastric cancer cells. Neoplasia. 2017;19(12):1022–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haq R, Shoag J, Andreu-Perez P, Yokoyama S, Edelman H, Rowe GC, et al. Oncogenic braf regulates oxidative metabolism via pgc1α and mitf. Cancer Cell. 2013;23(3):302–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hashidate-Yoshida T, Harayama T, Hishikawa D, Morimoto R, Hamano F, Tokuoka SM et al. Fatty acid remodeling by lpcat3 enriches arachidonate in phospholipid membranes and regulates triglyceride transport. Elife. 2015;4.

  • Henderson RJ. Fatty acid metabolism in freshwater fish with particular reference to polyunsaturated fatty acids. Arch Anim Nutr. 1996;49(1):5–22.

    CAS  Google Scholar 

  • Hengartner MO. The biochemistry of apoptosis. Nature. 2000;407(6805):770–6.

    Article  CAS  PubMed  Google Scholar 

  • Jenkins NL, James SA, Salim A, Sumardy F, Speed TP, Conrad M, et al. Changes in ferrous iron and glutathione promote ferroptosis and frailty in aging caenorhabditis elegans. Elife. 2020;9:e56580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeon S, Chandel NS, Hay N. Ampk regulates nadph homeostasis to promote tumour cell survival during energy stress. Nature. 2012;485(7400):661–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang X, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Bio. 2021;22(4):266–82.

    Article  Google Scholar 

  • Kaneko T, Iuchi Y, Kobayashi T, Fujii T, Saito H, Kurachi H, et al. The expression of glutathione reductase in the male reproductive system of rats supports the enzymatic basis of glutathione function in spermatogenesis. Eur J Biochem. 2002;269(5):1570–8.

    Article  CAS  PubMed  Google Scholar 

  • Karuppagounder SS, Alim I, Khim SJ, Bourassa MW, Sleiman SF, John R, et al. Therapeutic targeting of oxygen-sensing prolyl hydroxylases abrogates atf4-dependent neuronal death and improves outcomes after brain hemorrhage in several rodent models. Sci Transl Med. 2016;8(328):328r–9r.

    Article  Google Scholar 

  • Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wideranging implications in tissue kinetics. Brit J Cancer. 1972;26(4):239–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim EH, Shin D, Lee J, Jung AR, Roh J. Cisd2 inhibition overcomes resistance to sulfasalazine-induced ferroptotic cell death in head and neck cancer. Cancer Lett. 2018;432:180–90.

    Article  CAS  PubMed  Google Scholar 

  • Koppula P, Zhuang L, Gan B. Cystine transporter slc7a11/xct in cancer: ferroptosis, nutrient dependency, and cancer therapy. Protein Cell. 2021;12(8):599–620.

    Article  CAS  PubMed  Google Scholar 

  • Kraft VA, Bezjian CT, Pfeiffer S, Ringelstetter L, Müller C, Zandkarimi F, et al. Gtp cyclohydrolase 1/tetrahydrobiopterin counteract ferroptosis through lipid remodeling. Acs Central Sci. 2019;6(1):41–53.

    Article  Google Scholar 

  • Kriska T, Pilat A, Schmitt JC, Girotti AW. Sterol carrier protein-2 (scp-2) involvement in cholesterol hydroperoxide cytotoxicity as revealed by scp-2 inhibitor effects. J Lipid Res. 2010;51(11):3174–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kroemer G, El-Deiry WS, Golstein P, Peter ME, Vaux D, Vandenabeele P, et al. Classification of cell death: recommendations of the nomenclature committee on cell death. Cell Death Differ. 2005;12(12):1463–7.

    Article  CAS  PubMed  Google Scholar 

  • Kruszewski M. Labile iron pool: the main determinant of cellular response to oxidative stress. Mutat Res Fundam Mol Mech Mutagen. 2003;531(1–2):81–92.

    Article  CAS  Google Scholar 

  • Kuang F, Liu J, Tang D, Kang R. Oxidative damage and antioxidant defense in ferroptosis. Front Cell Dev Biol. 2020:969.

  • Kuwata H, Hara S. Role of acyl-coa synthetase acsl4 in arachidonic acid metabolism. Prostag Oth Lipid m. 2019;144:106363.

    CAS  Google Scholar 

  • Kwon M, Park E, Lee S, Chung SW. Heme oxygenase-1 accelerates erastin-induced ferroptotic cell death. Oncotarget. 2015;6(27):24393–403.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee H, Zandkarimi F, Zhang Y, Meena JK, Kim J, Zhuang L, et al. Energy-stress-mediated ampk activation inhibits ferroptosis. Nat Cell Biol. 2020;22(2):225–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewerenz J, Hewett SJ, Huang Y, Lambros M, Gout PW, Kalivas PW, et al. The cystine/glutamate antiporter system xc− in health and disease: from molecular mechanisms to novel therapeutic opportunities. Antioxid Redox Sign. 2013;18(5):522–55.

    Article  CAS  Google Scholar 

  • Lewerenz J, Klein M, Methner A. Cooperative action of glutamate transporters and cystine/glutamate antiporter system xc- protects from oxidative glutamate toxicity. J Neurochem. 2006;98(3):916–25.

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Yan H, Xu X, Liu H, Wu C, Zhao L. Erastin/sorafenib induces cisplatin-resistant non-small cell lung cancer cell ferroptosis through inhibition of the nrf2/xct pathway. Oncol Lett. 2020a;19(1):323–33.

    CAS  PubMed  Google Scholar 

  • Li Z, Chen L, Chen C, Zhou Y, Hu D, Yang J, et al. Targeting ferroptosis in breast cancer. Biomark Res. 2020b;8(1):58.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Y, Feng D, Wang Z, Zhao Y, Sun R, Tian D, et al. Ischemia-induced acsl4 activation contributes to ferroptosis-mediated tissue injury in intestinal ischemia/reperfusion. Cell Death Differ. 2019;26(11):2284–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Ma N, Xu J, Zhang Y, Yang P, Su X et al. Targeting ferroptosis: pathological mechanism and treatment of ischemia-reperfusion injury. Oxid Med Cell Longev. 2021;2021.

  • Lin H, Ho H, Chang Y, Wei C, Chu P. The evolving role of ferroptosis in breast cancer: translational implications present and future. Cancers. 2021;13(18):4576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin X, Ping J, Wen Y, Wu Y. The mechanism of ferroptosis and applications in tumor treatment. Front Pharmacol. 2020:1061.

  • Linkermann A. Nonapoptotic cell death in acute kidney injury and transplantation. Kidney Int. 2016;89(1):46–57.

    Article  PubMed  Google Scholar 

  • Liu X, Nguyen NH, Marquess KD, Yang F, Haile DJ. Regulation of hepcidin and ferroportin expression by lipopolysaccharide in splenic macrophages. Blood Cells Mol Dis. 2005;35(1):47–56.

    Article  CAS  PubMed  Google Scholar 

  • Liu T, Jiang L, Tavana O, Gu W. The deubiquitylase otub1 mediates ferroptosis via stabilization of slc7a11. Cancer Res. 2019;79(8):1913–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Kang R, Tang D. Escrt-iii-mediated membrane repair in cell death and tumor resistance. Cancer Gene Ther. 2021;28(1–2):1–4.

  • Liu Y, Fang Y, Zhang Z, Luo Y, Zhang A, Lenahan C, et al. Ferroptosis: an emerging therapeutic target in stroke. J Neurochem. 2022;160(1):64–73.

    Article  CAS  PubMed  Google Scholar 

  • Llabani E, Hicklin RW, Lee HY, Motika SE, Crawford LA, Weerapana E, et al. Diverse compounds from pleuromutilin lead to a thioredoxin inhibitor and inducer of ferroptosis. Nat Chem. 2019;11(6):521–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma S, Henson ES, Chen Y, Gibson SB. Ferroptosis is induced following siramesine and lapatinib treatment of breast cancer cells. Cell Death Dis. 2016;7(7):e2307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magtanong L, Ko P, To M, Cao JY, Forcina GC, Tarangelo A, et al. Exogenous monounsaturated fatty acids promote a ferroptosis-resistant cell state. Cell Chem Biol. 2019;26(3):420–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mai TT, Hamaï A, Hienzsch A, Cañeque T, Müller S, Wicinski J, et al. Salinomycin kills cancer stem cells by sequestering iron in lysosomes. Nat Chem. 2017;9(10):1025–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mancias JD, Wang X, Gygi SP, Harper JW, Kimmelman AC. Quantitative proteomics identifies ncoa4 as the cargo receptor mediating ferritinophagy. Nature. 2014;509(7498):105–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miess H, Dankworth B, Gouw AM, Rosenfeldt M, Schmitz W, Jiang M, et al. The glutathione redox system is essential to prevent ferroptosis caused by impaired lipid metabolism in clear cell renal cell carcinoma. Oncogene. 2018;37(40):5435–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohammad RM, Muqbil I, Lowe L, Yedjou C, Hsu H, Lin L et al. Broad targeting of resistance to apoptosis in cancer. Semin Cancer Biol. 2015;35 Suppl(0):S78–S103.

  • Nawarskas JJ. Hmg-coa reductase inhibitors and coenzyme q10. Cardiol Rev. 2005;13(2):76–9.

    Article  PubMed  Google Scholar 

  • Nguyen THP, Mahalakshmi B, Velmurugan BK. Functional role of ferroptosis on cancers, activation and deactivation by various therapeutic candidates-an update. Chem-Biol Interact. 2020;317:108930.

    Article  CAS  PubMed  Google Scholar 

  • Osrodek M, Hartman ML, Czyz M. Physiologically relevant oxygen concentration (6% o2) as an important component of the microenvironment impacting melanoma phenotype and melanoma response to targeted therapeutics in vitro. Int J Mol Sci. 2019;20(17):4203.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ou W, Liang Y, Qing Y, Wu W, Xie M, Zhang Y, et al. Hypoxic acclimation improves cardiac redox homeostasis and protects heart against ischemia-reperfusion injury through upregulation of o-glcnacylation. Redox Biol. 2021;43:101994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ou M, Lin C, Wang Y, Lu Y, Wang W, Li Z, et al. Heterojunction engineered bioactive chlorella for cascade promoted cancer therapy. J Control Release. 2022;345:755–69.

    Article  CAS  PubMed  Google Scholar 

  • Pagliara V, Saide A, Mitidieri E, di Villa BRD, Sorrentino R, Russo G, et al. 5-fu targets rpl3 to induce mitochondrial apoptosis via cystathionine-β-synthase in colon cancer cells lacking p53. Oncotarget. 2016;7(31):50333.

    Article  PubMed  PubMed Central  Google Scholar 

  • Paraskevaidis IA, Iliodromitis EK, Vlahakos D, Tsiapras DP, Nikolaidis A, Marathias A, et al. Deferoxamine infusion during coronary artery bypass grafting ameliorates lipid peroxidation and protects the myocardium against reperfusion injury: immediate and long-term significance. Eur Heart J. 2005;26(3):263–70.

    Article  CAS  PubMed  Google Scholar 

  • Park S, Oh J, Kim M, Jin E. Bromelain effectively suppresses kras-mutant colorectal cancer by stimulating ferroptosis. Anim Cells Syst. 2018;22(5):334–40.

    Article  CAS  Google Scholar 

  • Park SH, Gammon SR, Knippers JD, Paulsen SR, Rubink DS, Winder WW. Phosphorylation-activity relationships of ampk and acetyl-coa carboxylase in muscle. Journal of applied physiology (Bethesda, Md. : 1985). 2002;92(6):2475–82.

  • Phani S, Loike JD, Przedborski S. Neurodegeneration and inflammation in parkinson’s disease. Parkinsonism Relat D. 2012;18:S207–9.

    Article  Google Scholar 

  • Philpott CC, Patel SJ, Protchenko O. Management versus miscues in the cytosolic labile iron pool: the varied functions of iron chaperones. Biochim Biophys Acta Mol Cell Res 2020;1867(11):118830.

  • Poljsak B, Šuput D, Milisav I. Achieving the balance between ROS and antioxidants: when to use the synthetic antioxidants. Oxid Med Cell Longev. 2013;2013:956792.

  • Probst L, Dächert J, Schenk B, Fulda S. Lipoxygenase inhibitors protect acute lymphoblastic leukemia cells from ferroptotic cell death. Biochem Pharmacol. 2017;140:41–52.

    Article  CAS  PubMed  Google Scholar 

  • Qiu Y, Cao Y, Cao W, Jia Y, Lu N. The application of ferroptosis in diseases. Pharmacol Res. 2020;159:104919.

    Article  CAS  PubMed  Google Scholar 

  • Quan J, Bode AM, Luo X. Acsl family: the regulatory mechanisms and therapeutic implications in cancer. Eur J Pharmacol. 2021;909:174397.

    Article  CAS  PubMed  Google Scholar 

  • Russo A, Saide A, Smaldone S, Faraonio R, Russo G. Role of ul3 in multidrug resistance in p53-mutated lung cancer cells. Int J Mol Sci. 2017;18(3):547.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sasaki M, Chiwaki F, Kuroda T, Komatsu M, Matsusaki K, Kohno T, et al. Efficacy of glutathione inhibitors for the treatment of arid1a-deficient diffuse-type gastric cancers. Biochem Biophys Res Commun. 2020;522(2):342–7.

    Article  CAS  PubMed  Google Scholar 

  • Sauler M, Bazan IS, Lee PJ. Cell death in the lung: the apoptosis–necroptosis axis. Annu Rev Physiol. 2019;81:375–402.

    Article  CAS  PubMed  Google Scholar 

  • Schöckel L, Glasauer A, Basit F, Bitschar K, Truong H, Erdmann G, et al. Targeting mitochondrial complex i using bay 87–2243 reduces melanoma tumor growth. Cancer Metab. 2015;3(1):1–16.

    Article  Google Scholar 

  • Scindia Y, Dey P, Thirunagari A, Liping H, Rosin DL, Floris M, et al. Hepcidin mitigates renal ischemia-reperfusion injury by modulating systemic iron homeostasis. J Am Soc Nephrol. 2015;26(11):2800–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shan X, Lv Z, Yin M, Chen J, Wang J, Wu Q. The protective effect of cyanidin-3-glucoside on myocardial ischemia-reperfusion injury through ferroptosis. Oxid Med Cell Longev. 2021;2021.

  • Song Y, Wang B, Zhu X, Hu J, Sun J, Xuan J, et al. Human umbilical cord blood–derived mscs exosome attenuate myocardial injury by inhibiting ferroptosis in acute myocardial infarction mice. Cell Biol Toxicol. 2021;37(1):51–64.

    Article  CAS  PubMed  Google Scholar 

  • Soula M, Weber RA, Zilka O, Alwaseem H, La K, Yen F, et al. Metabolic determinants of cancer cell sensitivity to canonical ferroptosis inducers. Nat Chem Biol. 2020;16(12):1351–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stincone A, Prigione A, Cramer T, Wamelink MM, Campbell K, Cheung E, et al. The return of metabolism: biochemistry and physiology of the pentose phosphate pathway. Biol Rev. 2015;90(3):927–63.

    Article  PubMed  Google Scholar 

  • Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ, et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell. 2017;171(2):273–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stockwell BR. Ferroptosis turns 10: emerging mechanisms, physiological functions, and therapeutic applications. Cell. 2022;185(14):2401–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su Y, Zhao B, Zhou L, Zhang Z, Shen Y, Lv H, et al. Ferroptosis, a novel pharmacological mechanism of anti-cancer drugs. Cancer Lett. 2020;483:127–36.

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Ou Z, Xie M, Kang R, Fan Y, Niu X, et al. Hspb1 as a novel regulator of ferroptotic cancer cell death. Oncogene. 2015;34(45):5617–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takebe N, Warren RQ, Ivy SP. Breast cancer growth and metastasis: interplay between cancer stem cells, embryonic signaling pathways and epithelial-to-mesenchymal transition. Breast Cancer Res. 2011;13(3):1–11.

    Article  Google Scholar 

  • Tang D, Kroemer G. Ferroptosis. Curr Biol. 2020;30(21):R1292–7.

    Article  CAS  PubMed  Google Scholar 

  • Tang R, Xu J, Zhang B, Liu J, Liang C, Hua J, et al. Ferroptosis, necroptosis, and pyroptosis in anticancer immunity. J Hematol Oncol. 2020;13(1):110.

    Article  PubMed  PubMed Central  Google Scholar 

  • Thöny B, Auerbach G, Blau N. Tetrahydrobiopterin biosynthesis, regeneration and functions. Biochem J. 2000;347(1):1–16.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tocher DR. Metabolism and functions of lipids and fatty acids in teleost fish. Rev Fish Sci. 2003;11(2):107–84.

    Article  CAS  Google Scholar 

  • Tsoi J, Robert L, Paraiso K, Galvan C, Sheu KM, Lay J, et al. Multi-stage differentiation defines melanoma subtypes with differential vulnerability to drug-induced iron-dependent oxidative stress. Cancer Cell. 2018;33(5):890–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uderhardt S, Herrmann M, Oskolkova OV, Aschermann S, Bicker W, Ipseiz N, et al. 12/15-lipoxygenase orchestrates the clearance of apoptotic cells and maintains immunologic tolerance. Immunity. 2012;36(5):834–46.

    Article  CAS  PubMed  Google Scholar 

  • Vance RE, Hong S, Gronert K, Serhan CN, Mekalanos JJ. The opportunistic pathogen pseudomonas aeruginosa carries a secretable arachidonate 15-lipoxygenase. Proc Natl Acad Sci. 2004;101(7):2135–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaux DL, Korsmeyer SJ. Cell death in development. Cell. 1999;96(2):245–54.

    Article  CAS  PubMed  Google Scholar 

  • Viswanathan VS, Ryan MJ, Dhruv HD, Gill S, Eichhoff OM, Seashore-Ludlow B, et al. Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature. 2017;547(7664):453–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vogt C, Vogt KC. Untersuchungen über die Entwicklungsgeschichte der Geburtshelferkröte (Alytes obstetricans). Jent & Gassmann, 1842.

  • Wang H, Cheng Y, Mao C, Liu S, Xiao D, Huang J, et al. Emerging mechanisms and targeted therapy of ferroptosis in cancer. Mol Ther. 2021;29(7):2185–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • WARBURG O. On the origin of cancer cells. Science (New York, N.Y.). 1956;123(3191):309–14.

  • Ward RJ, Dexter DT, Crichton RR. Neurodegenerative diseases and therapeutic strategies using iron chelators. J Trace Elem Med Bio. 2015;31:267–73.

    Article  CAS  Google Scholar 

  • Wei G, Sun J, Hou Z, Luan W, Wang S, Cui S, et al. Novel antitumor compound optimized from natural saponin albiziabioside a induced caspase-dependent apoptosis and ferroptosis as a p53 activator through the mitochondrial pathway. Eur J Med Chem. 2018;157:759–72.

    Article  CAS  PubMed  Google Scholar 

  • Wei X, Yi X, Zhu X, Jiang D. Posttranslational modifications in ferroptosis. Oxid Med Cell Longev. 2020;2020.

  • Weigand I, Schreiner J, Röhrig F, Sun N, Landwehr L, Urlaub H, et al. Active steroid hormone synthesis renders adrenocortical cells highly susceptible to type ii ferroptosis induction. Cell Death Dis. 2020;11(3):1–12.

    Article  Google Scholar 

  • Weiland A, Wang Y, Wu W, Lan X, Han X, Li Q, et al. Ferroptosis and its role in diverse brain diseases. Mol Neurobiol. 2019;56(7):4880–93.

    Article  CAS  PubMed  Google Scholar 

  • Weinberg ED. The role of iron in cancer. Eur J Cancer Prev. 1996:19–36.

  • Wen Q, Liu J, Kang R, Zhou B, Tang D. The release and activity of hmgb1 in ferroptosis. Biochem Biophys Res Commun. 2019;510(2):278–83.

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Tuo Q, Lei P. Ferroptosis, a recent defined form of critical cell death in neurological disorders. J Mol Neurosci. 2018;66(2):197–206.

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Wang F, Ta N, Zhang T, Gao W. The multifaceted regulation of mitochondria in ferroptosis. Life. 2021a;11(3):222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu S, Zhu C, Tang D, Dou QP, Shen J, Chen X. The role of ferroptosis in lung cancer. Biomark Res. 2021b;9(1):1–14.

    Article  CAS  Google Scholar 

  • Xia X, Fan X, Zhao M, Zhu P. The relationship between ferroptosis and tumors: a novel landscape for therapeutic approach. Curr Gene Ther. 2019;19(2):117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao D, Zeng L, Yao K, Kong X, Wu G, Yin Y. The glutamine-alpha-ketoglutarate (akg) metabolism and its nutritional implications. Amino Acids. 2016;48(9):2067–80.

    Article  CAS  PubMed  Google Scholar 

  • Xie A, Gao J, Xu L, Meng D. Shared mechanisms of neurodegeneration in alzheimer’s disease and parkinson’s disease. Biomed Res Int. 2014;2014.

  • Xie Y, Hou W, Song X, Yu Y, Huang J, Sun X, et al. Ferroptosis: process and function. Cell Death Differ. 2016;23(3):369–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie Y, Zhu S, Song X, Sun X, Fan Y, Liu J, et al. The tumor suppressor p53 limits ferroptosis by blocking dpp4 activity. Cell Rep. 2017;20(7):1692–704.

    Article  CAS  PubMed  Google Scholar 

  • Xu D, Lü Y, Li Y, Li S, Wang Z, Wang J. Ferroptosis resistance in cancer: an emerging crisis of new hope. BIO Integration. 2021a;2(1):22–8.

    Article  CAS  Google Scholar 

  • Xu S, He Y, Lin L, Chen P, Chen M, Zhang S. The emerging role of ferroptosis in intestinal disease. Cell Death Dis. 2021b;12(4):289.

    Article  Google Scholar 

  • Xu S, Min J, Wang F. Ferroptosis: an emerging player in immune cells. Sci Bull. 2021c;22:2257–60.

    Article  Google Scholar 

  • Yamada N, Karasawa T, Wakiya T, Sadatomo A, Ito H, Kamata R, et al. Iron overload as a risk factor for hepatic ischemia-reperfusion injury in liver transplantation: potential role of ferroptosis. Am J Transplant. 2020;20(6):1606–18.

    Article  CAS  PubMed  Google Scholar 

  • Yan B, Ai Y, Sun Q, Ma Y, Cao Y, Wang J, et al. Membrane damage during ferroptosis is caused by oxidation of phospholipids catalyzed by the oxidoreductases por and cyb5r1. Mol Cell. 2021;81(2):355–69.

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Lin X. Potential relationship between autophagy and ferroptosis in myocardial ischemia/reperfusion injury. Genes Dis. 2022.

  • Yang WS, Kim KJ, Gaschler MM, Patel M, Shchepinov MS, Stockwell BR. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc Natl Acad Sci. 2016;113(34):E4966–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Luo M, Zhang K, Zhang J, Gao T, Connell DO, et al. Nedd4 ubiquitylates vdac2/3 to suppress erastin-induced ferroptosis in melanoma. Nat Commun. 2020;11(1):1–14.

    CAS  Google Scholar 

  • Yankner BA. Mechanisms of neuronal degeneration in alzheimer’s disease. Neuron. 1996;16(5):921–32.

    Article  CAS  PubMed  Google Scholar 

  • Yao M, Liu T, Zhang L, Wang M, Yang Y, Gao J. Role of ferroptosis in neurological diseases. Neurosci Lett. 2021;747:135614.

    Article  CAS  PubMed  Google Scholar 

  • Yu H, Yang C, Jian L, Guo S, Chen R, Li K, et al. Sulfasalazine-induced ferroptosis in breast cancer cells is reduced by the inhibitory effect of estrogen receptor on the transferrin receptor. Oncol Rep. 2019;42(2):826–38.

    PubMed  Google Scholar 

  • Zeng X, An H, Yu F, Wang K, Zheng L, Zhou W, et al. Benefits of iron chelators in the treatment of parkinson’s disease. Neurochem Res. 2021;46(5):1239–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Wang D, Xu S, Zhang S, Fan Y, Yang Y, et al. Α-lipoic acid improves abnormal behavior by mitigation of oxidative stress, inflammation, ferroptosis, and tauopathy in p301s tau transgenic mice. Redox Biol. 2018;14:535–48.

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Sui S, Wang L, Li H, Zhang L, Xu S, et al. Inhibition of tumor propellant glutathione peroxidase 4 induces ferroptosis in cancer cells and enhances anticancer effect of cisplatin. J Cell Physiol. 2020;235(4):3425–37.

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Liu Y, Li Q, Xu A, Hu Y, Sun C. Ferroptosis in hematological malignancies and its potential network with abnormal tumor metabolism. Biomed Pharmacother. 2022a;148:112747.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Qu Y, Zhang Q, Li F, Li B, Li Z et al. Exosomes derived from hepatitis b virus-infected hepatocytes promote liver fibrosis via mir-222/tfrc axis. Cell Biol Toxicol. 2022b:1–15.

  • Zhao Y, Li Y, Zhang R, Wang F, Wang T, Jiao Y. The role of erastin in ferroptosis and its prospects in cancer therapy. Oncotargets Ther. 2020;13:5429–41.

    Article  CAS  Google Scholar 

  • Zhao S, Li P, Wu W, Wang Q, Qian B, Li X, et al. Roles of ferroptosis in urologic malignancies. Cancer Cell Int. 2021a;21(1):676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Huang Z, Peng H. Molecular mechanisms of ferroptosis and its roles in hematologic malignancies. Front Oncol. 2021b;11:743006.

  • Zheng J, Sato M, Mishima E, Sato H, Proneth B, Conrad M. Sorafenib fails to trigger ferroptosis across a wide range of cancer cell lines. Cell Death Dis. 2021;12(7):1–10.

    Article  Google Scholar 

  • Zhou B, Liu J, Kang R, Klionsky DJ, Kroemer G, Tang D. Ferroptosis is a type of autophagy-dependent cell death. Semin Cancer Biol. 2020;66:89–100.

    Article  CAS  PubMed  Google Scholar 

  • Zille M, Oses-Prieto JA, Savage SR, Karuppagounder SS, Chen Y, Kumar A, et al. Hemin-induced death models hemorrhagic stroke and is a variant of classical neuronal ferroptosis. J Neurosci. 2022;42(10):2065–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zitvogel L, Kroemer G. Interferon-γ induces cancer cell ferroptosis. Cell Res. 2019;29(9):692–3.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zou Y, Palte MJ, Deik AA, Li H, Eaton JK, Wang W et al. Hif-2α drives an intrinsic vulnerability to ferroptosis in clear cell renal cell carcinoma. BioRxiv. 2018:388041.

  • Zuo S, Yu J, Pan H, Lu L. Novel insights on targeting ferroptosis in cancer therapy. Biomark Res. 2020;8(1):1–11.

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (82001887 to JW and 81900105 to ZW), in part by a horizontal project of Sun Yat-sen University (K21-75110–007), Shenzhen Science and Technology Program (JCYJ20210324115003009), and the Guangdong Basic and Applied Basic Research Foundation (2019A1515110326).

Author information

Authors and Affiliations

Authors

Contributions

Y.L. and J.W. wrote the main manuscript text, Z.W. prepared figures, and M.W. prepared tables. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Meiying Wu, Zhe Wang or Junqing Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

Not applicable.

Consent to participate

Written informed consents were collected from all participants before enrollment.

Consent for publication

All contributing authors agree to the publication of this article.

Human ethics

Not applicable.

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, Y., Wu, M., Wang, Z. et al. Ferroptosis: From regulation of lipid peroxidation to the treatment of diseases. Cell Biol Toxicol 39, 827–851 (2023). https://doi.org/10.1007/s10565-022-09778-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-022-09778-2

Keywords

Navigation