Skip to main content
Log in

Acidity, Crystallite Size and Pore Structure as Key Factors Influencing 1,3,5-Trimethylbenzene Hydrodealkylation Performance of NiMoS/ZSM-5

  • Original Article
  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

NiMoS supported on ZSM-5 with different Si/Al ratio, crystallite size and pore structure was prepared by incipient impregnation method and applied in 1, 3, 5-trimethylbenzene (1, 3, 5-TMB) hydrodealkylation (HDAK). The physicochemical properties of samples were characterized by XRD, FTIR, SEM, N2 adsorption–desorption, NH3-TPD, Py-FTIR, H2-TPR, HRTEM and TGA. It is demonstrated that for microporous NiMoS/ZSM-5, acid amount and crystallite size of HZSM-5 are key factors affecting HDAK performance. The larger acid amount and smaller crystallite size can promote the conversion of 1, 3, 5-TMB, especially the dealkylation reaction, resulting in higher BTX yield. Compared to NiMoZ-3, mesopores in micro-mesoporous NiMoAKZ-3 are beneficial to accessibility of 1, 3, 5-TMB to NiMoS and acid sites in close proximity, and the diffusion of reactant and product molecules inside pores, thus resulting in superior HDAK performance of NiMoAKZ-3. Moreover, the reaction network of 1, 3, 5-TMB HDAK was revealed according to product distribution.

Graphic Abstract

NiMoS supported on ZSM-5 was developed for heavy aromatic hydrodealkylation (HDAK). Acid amount and crystallite size of microporous ZSM-5 are key factors affecting 1,3,5-trimethylbenzene (1,3,5-TMB) HDAK. Mesopores inside ZSM-5 facilitate accessibility of 1,3,5-TMB to NiMoS and acid sites in close proximity and improve HDAK performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

Manuscript including all data correct and unpublished.

References

  1. Ali SA, Almulla FM, Jermy BR, Aitani AM, Abudawoud RH, AlAmer M, Qureshi ZS, Mohammad T, Alasiri HS (2021) J Ind Eng Chem 98:189–199

    Article  CAS  Google Scholar 

  2. Margarit VJ, Portilla MT, Navarro MT, Abudawoud R, Al-Zahrani IM, Shaikh S, Martínez C, Corma A (2019) Appl Catal A 581:11–22

    Article  CAS  Google Scholar 

  3. Kim T, Kim G-P, Jang J, Shim SE, Ahn W-S, Baeck S-H (2016) Catal Sci Technol 6:5599–5607

    Article  CAS  Google Scholar 

  4. Lim D, Jang J, Kim T, Shim SE, Baeck S-H (2015) J Mol Catal A 407:147–151

    Article  CAS  Google Scholar 

  5. Shen Q, Zhu X, Dong J, Zhu Z (2009) Catal Lett 129:170–180

    Article  CAS  Google Scholar 

  6. Jin T, Xia DH, Xiang YZ, Zhou YL (2009) Pet Sci Technol 27:1821–1835

    Article  CAS  Google Scholar 

  7. Serra JM, Guillon E, Corma A (2005) J Catal 232:342–354

    Article  CAS  Google Scholar 

  8. Wang X, Xiao C, Alabsi MH, Zheng P, Cao Z, Mei J, Shi Y, Duan A, Gao D, Huang K-W, Xu C (2020). Green Energy Environ. https://doi.org/10.1016/j.gee.2020.1010.1012

    Article  Google Scholar 

  9. Yang L, Song Z, Yu Y, Zhu L, Xia D (2020) Catal Surv Asia 24:104–114

    Article  CAS  Google Scholar 

  10. Stanislaus A, Cooper BH (1994) Catal Rev 36:75–123

    Article  CAS  Google Scholar 

  11. Wang H, Cheng X, Xiao B, Wang C, Zhao L, Zhu Y (2015) Catal Surv Asia 19:78–87

    Article  CAS  Google Scholar 

  12. Tsai S-T, Chao P-H, Wang I, Tsai T-C (2010) Appl Catal A 385:73–79

    Article  CAS  Google Scholar 

  13. Albahar M, Li C, Zholobenko VL, Garforth AA (2020) Microporous Mesoporous Mater 302:110221

    Article  CAS  Google Scholar 

  14. Shang Y, Wang W, Zhai Y, Song Y, Zhao X, Ma T, Wei J, Gong Y (2019) Microporous Mesoporous Mater 276:173–182

    Article  CAS  Google Scholar 

  15. Xu J, Huang T, Fan Y (2017) Appl Catal B 203:839–850

    Article  CAS  Google Scholar 

  16. Wang Y, Yin C, Zhao X, Liu C (2017) Catal Commun 88:13–17

    Article  CAS  Google Scholar 

  17. Subramanian V, Zholobenko VL, Cheng K, Lancelot C, Heyte S, Thuriot J, Paul S, Ordomsky VV, Khodakov AY (2016) ChemCatChem 8:380–389

    Article  CAS  Google Scholar 

  18. Ma Z, Fu T, Wang Y, Shao J, Ma Q, Zhang C, Cui L, Li Z (2019) Ind Eng Chem Res 58:2146–2158

    Article  CAS  Google Scholar 

  19. Han W, Yuan P, Fan Y, Liu H, Bao X (2012) J Mater Chem 22:12121–12127

    Article  CAS  Google Scholar 

  20. Mohebbi S, Rostamizadeh M, Kahforoushan D (2020) Fuel 266:117063

    Article  CAS  Google Scholar 

  21. López-Martín A, Caballero A, Colón G (2020) Mol Catal 486:110787

    Article  Google Scholar 

  22. Chen Y, Zhang J, Jiang X, Wei L, Li Z, Liu C (2020) J Taiwan Inst Chem Eng 116:153–159

    Article  CAS  Google Scholar 

  23. Pan M, Zheng J, Ou Y, Wang Q, Zhang L, Li R (2021) Microporous Mesoporous Mater 316:110983

    Article  CAS  Google Scholar 

  24. Qiao K, Shi X, Zhou F, Chen H, Fu J, Ma H, Huang H (2017) Appl Catal A 547:274–282

    Article  CAS  Google Scholar 

  25. Li B, Li S, Li N, Chen H, Zhang W, Bao X, Lin B (2006) Microporous Mesoporous Mater 88:244–253

    Article  CAS  Google Scholar 

  26. Ma D, Zhang W, Shu Y, Liu X, Xu Y, Bao X (2000) Catal Lett 66:155–160

    Article  CAS  Google Scholar 

  27. Li J, Wang L, Zhang D, Qian J, Liu L, Xing J (2019) J Fuel Chem Technol 47:957–963

    Article  CAS  Google Scholar 

  28. Zhou W, Liu M, Zhang Q, Wei Q, Ding S, Zhou Y (2017) ACS Catal 7:7665–7679

    Article  CAS  Google Scholar 

  29. Ye J, Bai L, Liu B, Tian H, Hu J, Pologarzon F, Mayes RT, Wu Z, Fang Y (2019) Ind Eng Chem Res 58:7094–7106

    Article  CAS  Google Scholar 

  30. Dai Q, Zhu Q, Lou Y, Wang X (2018) J Catal 357:29–40

    Article  Google Scholar 

  31. Čižmek A, Subotić B, Aiello R, Crea F, Nastro A, Tuoto C (1995) Microporous Mater 4:159–168

    Article  Google Scholar 

  32. Cimek A, Subotic B, Smit I, Tonejc A, Aiello R, Crea F, Nastro A (1995) Microporous Mater 8:159–169

    Article  Google Scholar 

  33. Liu Z, Han W, Hu D, Nie H, Wang Z, Sun S, Deng Z, Yang Q (2020) Catal Sci Technol 10:5218–5230

    Article  CAS  Google Scholar 

  34. Toppi S, Thomas C, Sayag C, Brodzki D, Peltier FL, Travers C, Djéga-Mariadassou G (2002) J Catal 210:431–444

    Article  CAS  Google Scholar 

  35. Sheng Q, Ling K, Li Z, Zhao L (2013) Fuel Process Technol 110:73–78

    Article  CAS  Google Scholar 

  36. Chen T-S, Yang W-Y, Du Z-Y, Feng J, Li W-Y (2021) Catal Today 371:40–49

    Article  CAS  Google Scholar 

  37. Ali SA, Ogunronbi KE, Al-Khattaf SS (2013) Chem Eng Res Des 91:2601–2616

    Article  CAS  Google Scholar 

  38. Gao S, Zhai S, Yan J, Wang Z, Wang L (2015) Chem Eng Technol 38:497–503

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support provided by Natural Science Research Project of Guangdong University of Petrochemical Technology (2017rc02 and 2017qn25), Science and Technology Planning Project of Maoming (2018022 & 2019400), Young Innovative Talents Project of Guangdong Province (2018KQNCX158 & 2020KQNCX051), Open fund of Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province, Guangdong Basic and Applied Basic Research Fund (2020A1515110729, 2020A1515110552 & 2021A1515010278), the Training Program for Guangdong Provincial Characteristic Innovation Projects of Universities (2018KTSCX149), and the Project of PhDs’ Start-up Research of Guangdong University of Petrochemical Technology (2020bs002).

Author information

Authors and Affiliations

Authors

Contributions

SS-conduct the experiment and write an original draft. YT-conduct the whole experiment. FC-writing, review, and editing. SW, RZ, YX, NL, XZ, CL-investigation. WY-review and editing.

Corresponding author

Correspondence to Feifei Chen.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Consent to Participate

All Authors are agreed for submission.

Consent for Publication

Agreed to submission.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shan, S., Tian, Y., Chen, F. et al. Acidity, Crystallite Size and Pore Structure as Key Factors Influencing 1,3,5-Trimethylbenzene Hydrodealkylation Performance of NiMoS/ZSM-5. Catal Surv Asia 26, 35–45 (2022). https://doi.org/10.1007/s10563-021-09344-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-021-09344-6

Keywords

Navigation