Skip to main content
Log in

Ni/LaBO3 (B = Al, Cr, Fe) Catalysts for Steam Reforming of Methane (SRM): On the Interaction Between Ni and LaBO3 Perovskites with Differed Fine Structures

  • Original Paper
  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

With the target to fabricate more feasible catalysts for SRM to produce hydrogen, the interaction between Ni and LaBO3 (B = Al, Cr and Fe) perovskite supports with different B-sites has been explored. To avoid the formation of big Ni grains, the Ni loading is intentionally set as low as 2 wt%. XRD and Raman results revealed that the three LaBO3 supports are composed of pure perovskite phase, but have differed fine crystal structures. While LaFeO3 and LaCrO3 can be indexed to the orthorhombic perovskite phase, LaAlO3 can be indexed to the hexagonal phase. H2-TPR and XPS results have validated that NiO has varied interfacial interactions with the LaBO3 supports through partial electron transfer from the supports to Ni. As a consequence, the active metallic Ni surface areas are in the order of 2%Ni/LaAlO3 > 2%Ni/LaCrO3 > 2%Ni/LaFeO3, well consistent with the reaction performance. Furthermore, by varying the B-site element, the abundance of the active surface oxygen species (mainly O22−) is varied, obeying the sequence of 2%Ni/LaCrO3 > 2%Ni/LaAlO3 > 2%Ni/LaFeO3, well consistent with the anti-coking ability of the catalysts. It is discovered that the change of the fine crystal structure of LaBO3 supports can influence the SRM performance of the 2%Ni/LaBO3 catalysts evidently. The reaction performance of the catalysts is mainly determined by the active Ni surface area, but the anti-coking ability is majorly decided by the amount of active oxygen species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Song JH, Yoo S, Yoo J, Park S, Gim MY, Kim TH, Song IK (2017) Mol Catal 434:123–133

    Article  CAS  Google Scholar 

  2. Wang H, Han J, Bo Z, Qin L, Wang Y, Yu F (2019) Mol Catal 475:110486

    Article  CAS  Google Scholar 

  3. Liu C, Li M, Wang J, Zhou X, Guo Q, Yan J, Li Y (2016) Chin J Catal 37:340–348

    Article  CAS  Google Scholar 

  4. Azancot L, Bobadilla LF, Santos JL, Córdoba JM, Centeno MA, Odriozola JA (2019) Int J Hydrogen Energy 44:19827–19840

    Article  CAS  Google Scholar 

  5. Huang T-J, Huang M-C (2008) Chem Eng J 145:149–153

    Article  CAS  Google Scholar 

  6. Li B, Kado S, Mukainakano Y, Miyazawa T, Miyao T, Naito S, Okumura K, Kunimori K, Tomishige K (2007) J Catal 245:144–155

    Article  CAS  Google Scholar 

  7. Pan C, Guo Z, Dai H, Ren R, Chu W (2020) Int J Hydrogen Energy 45:16133–16143

    Article  CAS  Google Scholar 

  8. Wang F, Wang Y, Zhang L, Zhu J, Han B, Fan W, Xu L, Yu H, Cai W, Li Z, Deng Z, Shi W (2020) Catal Today 355:502–511

    Article  CAS  Google Scholar 

  9. Zhu Y, Zhang S, Shan J-J, Nguyen L, Zhan S, Gu X, Tao F (2013) ACS Catal 3:2627–2639

    Article  CAS  Google Scholar 

  10. Abdulrasheed A, Jalil AA, Gambo Y, Ibrahim M, Hambali HU, Shahul Hamid MY (2019) Renew Sustain Energy Rev 108:175–193

    Article  CAS  Google Scholar 

  11. Li D, Nakagawa Y, Tomishige K (2011) Appl Catal A: Gen 408:1–24

    Article  CAS  Google Scholar 

  12. Zhang X, Zhu X, Lin L, Yao S, Zhang M, Liu X, Wang X, Li Y-W, Shi C, Ma D (2017) ACS Catal 7:912–918

    Article  CAS  Google Scholar 

  13. Arora S, Prasad R (2016) RSC Adv 6:108668–108688

    Article  CAS  Google Scholar 

  14. Bian Z, Wang Z, Jiang B, Hongmanorom P, Zhong W, Kawi S (2020) Renew Sustain Energy Rev 134:110291

    Article  CAS  Google Scholar 

  15. Azancot L, Bobadilla LF, Centeno MA, Odriozola JA (2021) Appl Catal B 285:11982

    Article  CAS  Google Scholar 

  16. Jadbabaei N, Slobodjian RJ, Shuai D, Zhang H (2017) Appl Catal A 543:209–217

    Article  CAS  Google Scholar 

  17. Zhang R-J, Xia G-F, Li M-F, Wu Y, Nie H, Li D-D (2015) J Fuel Chem Technol 43:1359–1365

    Article  CAS  Google Scholar 

  18. Djinović P, Batista J, Pintar A (2012) Int J Hydrogen Energy 37:2699–2707

    Article  CAS  Google Scholar 

  19. Figueredo GP, Medeiros RL, Macedo HP, de Oliveira AA, Braga RM, Mercury JM, Melo MA, Melo DM (2018) Int J Hydrogen Energy 43(24):11022–11037

    Article  CAS  Google Scholar 

  20. Foletto EL, Alves RW, Jahn SL (2006) J Power Sources 161:531–534

    Article  CAS  Google Scholar 

  21. Kehres J, Andreasen JW, Fløystad JB, Liu H, Molenbroek A, Jakobsen JG, Chorkendorff I, Nielsen JH, Høydalsvik K, Breiby DW, Vegge T (2015) J Phys Chem C 119:1424–1432

    Article  CAS  Google Scholar 

  22. Yu S, Hu Y, Cui H, Cheng Z, Zhou Z (2021) Chem Eng Sci 232:116379

    Article  CAS  Google Scholar 

  23. Ma Y, Wang X, You X, Liu J, Tian J, Xu X, Peng H, Liu W, Li C, Zhou W, Yuan P, Chen X (2014) ChemCatChem 6:3366–3376

    Article  CAS  Google Scholar 

  24. Peng H, Ma Y, Liu W, Xu X, Fang X, Lian J, Wang X, Li C, Zhou W, Yuan P (2015) J Energy Chem 24:416–424

    Article  Google Scholar 

  25. Zhang X, Fang X, Feng X, Li X, Liu W, Xu X, Zhang N, Gao Z, Wang X, Zhou W (2017) Catal Sci Technol 7:2729–2743

    Article  CAS  Google Scholar 

  26. Xu J, Xi R, Zhang Z, Zhang Y, Xu X, Fang X, Wang X (2020) Catal Today 374:29–37

    Article  CAS  Google Scholar 

  27. Bai X, Xie G, Guo Y, Tian L, El-Hosainy HM, Awadallah AE, Ji S, Wang Z-J (2021) Catal Today 368:78–85

    Article  CAS  Google Scholar 

  28. Hayakawa T, Suzuki S, Nakamura J, Uchijima T, Hamakawa S, Suzuki K, Shishido T, Takehira K (1999) Appl Catal A: Gen 183:273–285

    Article  CAS  Google Scholar 

  29. Lian J, Fang X, Liu W, Huang Q, Sun Q, Wang H, Wang X, Zhou W (2017) Top Catal 60:831–842

    Article  CAS  Google Scholar 

  30. Thalinger R, Gocyla M, Heggen M, Dunin-Borkowski R, Grünbacher M, Stöger-Pollach M, Schmidmair D, Klötzer B, Penner S (2016) J Catal 337:26–35

    Article  CAS  Google Scholar 

  31. Touahra F, Rabahi A, Chebout R, Boudjemaa A, Lerari D, Sehailia M, Halliche D, Bachari K (2016) Int J Hydrogen Energy 41:2477–2486

    Article  CAS  Google Scholar 

  32. Urasaki K, Sekine Y, Kawabe S, Kikuchi E, Matsukata M (2005) Appl Catal A: Gen 286:23–29

    Article  CAS  Google Scholar 

  33. Wei T, Jia L, Luo J-L, Chi B, Pu J, Li J (2020) Appl Surf Sci 506:144699

    Article  CAS  Google Scholar 

  34. Zhang Z, Ou Z, Qin C, Ran J, Wu C (2019) Fuel 257:116032

    Article  CAS  Google Scholar 

  35. Lee G, Kim I, Yang I, Ha J-M, Na HB, Jung JC (2018) Appl Surf Sci 429:55–61

    Article  CAS  Google Scholar 

  36. Sim Y, Yoo J, Ha J-M, Jung JC (2019) J Energy Chem 35:1–8

    Article  Google Scholar 

  37. Sim Y, Yang I, Kwon D, Ha J-M, Jung JC (2020) Catal Today 352:134–139

    Article  Google Scholar 

  38. Kim I, Lee G, Na HB, Ha J-M, Jung JC (2017) Mol Catal 435:13–23

    Article  CAS  Google Scholar 

  39. Assirey EAR (2019) Saudi Pharm J 27:817–829

    Article  PubMed  PubMed Central  Google Scholar 

  40. Sowjanya C, Mandal R, Abhinay S, Mohanta A, Das S, Pratihar SK (2020) J Solid State Chem 285:121237

    Article  CAS  Google Scholar 

  41. Silva RS, Cunha F, Barrozo P (2021) Solid State Commun 333:114346

    Article  CAS  Google Scholar 

  42. Triyono D, Hanifah U, Laysandra H (2020) Results in Phys 16:102995

    Article  Google Scholar 

  43. Tompsett GA, Sammes NM (2004) J Power Sources 130:1–7

    Article  CAS  Google Scholar 

  44. Suda J, Kamishima O, Kawamura J, Hattori T, Sato T (2009) J Phys Chem C 150:052249

    Google Scholar 

  45. Xia L, Fang X, Xu X, Liu Q, Yang M, Xu J, Gao Z, Wang X (2020) Int J Hydrogen Energy 45:4556–4569

    Article  CAS  Google Scholar 

  46. Xu L, Liu W, Zhang X, Tao L, Xia L, Xu X, Song J, Zhou W, Fang X, Wang X (2019) ChemCatChem 11:2887–2899

    Article  CAS  Google Scholar 

  47. Zhang X, Peng L, Fang X, Cheng Q, Liu W, Peng H, Gao Z, Zhou W, Wang X (2018) Int J Hydrogen Energy 43:8298–8312

    Article  CAS  Google Scholar 

  48. Tian H, Pei C, Wu Y, Chen S, Zhao Z-J, Gong J (2021) Appl Catal B 293:120178

    Article  CAS  Google Scholar 

  49. Xie YC, Tang YQ (1990) Spontaneous monolayer dispersion of oxides and salts onto surfaces of supports: applications to heterogeneous catalysis. In: Eley DD, Pines H, Weisz PB (eds) Advances in catalysis. Academic Press, Cambridge, pp 1–43

    Google Scholar 

  50. Nurk G, Kooser K, Urpelainen S, Käämbre T, Joost U, Kodu M, Kivi I, Kanarbik R, Kukk E, Lust E (2018) J Power Sources 378:589–596

    Article  CAS  Google Scholar 

  51. Brajpuriya R, Shripathi T (2009) Appl Surf Sci 255:6149–6154

    Article  CAS  Google Scholar 

  52. Gaspar AB, Perez CAC, Dieguez LC (2005) Appl Surf Sci 252:939–949

    Article  CAS  Google Scholar 

  53. Pan TJ, Li YS, Yang Q, Korotin DM, Kurmaev EZ, Sanchez-Pasten M, Zhidkov IS, Cholakh SO (2018) J Alloy Compd 740:887–894

    Article  CAS  Google Scholar 

  54. Zhang Y, Xu J, Xu X, Xi R, Liu Y, Fang X, Wang X (2020) Catal Today 355:518–528

    Article  CAS  Google Scholar 

  55. Das S, Jangam A, Jayaprakash S, Xi S, Hidajat K, Tomishige K, Kawi S (2021) Appl Catal B 290:119998

    Article  CAS  Google Scholar 

  56. Xu J, Zhang Y, Xu X, Fang X, Xi R, Liu Y, Zheng R, Wang X (2019) ACS Catal 9:4030–4045

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge deeply the financial support by the National Natural Science Foundation of China (21962009, 22062013, 21666020), the Natural Science Foundation of Jiangxi Province (20181ACB20005, 20202BAB203006, 20181BAB203017), the National Key Research and Development Program of China (2016YFC0209302), the Key Laboratory Foundation of Jiangxi Province for Environment and Energy Catalysis (20181BCD40004), Jiangxi Province Graduate Student Innovation Special Fund (YC2020B006), and the Nanchang University Innovation Fund Designated for Graduate students (CX2019063).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiuzhong Fang or Xiang Wang.

Ethics declarations

Conflicts of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 771 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, M., Wang, Y., Zhang, R. et al. Ni/LaBO3 (B = Al, Cr, Fe) Catalysts for Steam Reforming of Methane (SRM): On the Interaction Between Ni and LaBO3 Perovskites with Differed Fine Structures. Catal Surv Asia 25, 424–436 (2021). https://doi.org/10.1007/s10563-021-09343-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-021-09343-7

Keywords

Navigation