Skip to main content
Log in

Dehydrogenation of Formic Acid in Liquid Phase over Pd Nanoparticles Supported on Reduced Graphene Oxide Sheets

  • Original Article
  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

Reduced graphene oxide sheets (rGO) were used in this study to support Pd nanoparticles through soil-immobilization and impregnation methods. The catalysts were characterised using X-ray diffraction (XRD), scanning electron microscopy (SEM) with energy dispersive X-ray (EDX), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. These nanocatalysts were used as catalysts for the dehydrogenation of formic acid in liquid phase. The results showed that the Pd/rGO samples synthesised via the sol-immobilisation technique exhibited better catalytic activity (TOF = 910 h−1) than those synthesised by the impregnation technique (TOF = 506 h−1) because of the smaller size of Pd particles and higher Pd exposure of the catalysts synthesised by the first technique. The experimental outcomes showed that the graphene sheets provided remarkable support for Pd nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Grasemann M, Laurenczy G (2012) Energy Environ Sci 5:8171–8181

    Article  CAS  Google Scholar 

  2. Turner JA (2004) Science 305:972–974

    Article  CAS  PubMed  Google Scholar 

  3. Staffell I, Scamman D, Abad AV, Balcombe P, Dodds PE, Ekins P, Shah N, Ward KR (2019) Energy Environ Sci 12:463–491

    Article  CAS  Google Scholar 

  4. Li Z, Xu Q (2017) Acc Chem Res 50:1449–1458

    Article  CAS  PubMed  Google Scholar 

  5. Eppinger J, Huang KW (2017) ACS Energy Lett 2:188–195

    Article  CAS  Google Scholar 

  6. Guan C, Zhang DD, Pan Y et al (2017) Inorg Chem 56:438–445

    Article  CAS  PubMed  Google Scholar 

  7. Fellay C, Dyson P, Laurenczy G (2008) Angew Chem Int Ed Engl 47:3966–3968

    Article  CAS  PubMed  Google Scholar 

  8. Boddien A, Loges B, Junge H, Beller M (2008) ChemSusChem 1:751–758

    Article  CAS  PubMed  Google Scholar 

  9. Wang ZL, Yan JM, Zhang YF, Ping Y, Wang HL, Jiang Q (2014) Nanoscale 6:3073–3077

    Article  CAS  PubMed  Google Scholar 

  10. Yan JM, Wang ZL, Gu L, Li SJ, Wang HL, Zheng WT, Jiang Q (2015) Adv Energy Mater 5(10):1500107

    Article  CAS  Google Scholar 

  11. Wang ZL, Ping Y, Yan JM, Wang HL, Jiang Q (2014) Int J Hydrog Energy 39(10):4850–4856

    Article  CAS  Google Scholar 

  12. Wang W, He T, Liu X, He W, Cong H, Shen YS et al (2016) ACS Appl Mater Interfaces 8:20839–20848

    Article  CAS  PubMed  Google Scholar 

  13. Yang L, Hua X, Su J, Luo W, Chen S, Cheng G (2015) Appl Catal B 168:423–428

    Article  CAS  Google Scholar 

  14. Yurderi M, Bulut A, Zahmakiran M, Kaya M (2014) Appl Catal B 160:514–524

    Article  CAS  Google Scholar 

  15. Mori K, Tanaka H, Dojo M, Yoshizawa K, Yamashita H (2015) Chem Eur J 21(34):12085–12092

    Article  CAS  PubMed  Google Scholar 

  16. Zhang J, Dong Y, Liu Q, Zhou M, Mi G, Du X (2019) Int J Hydrog Energy 44:30226–30236

    Article  CAS  Google Scholar 

  17. Mori K, Naka K, Masuda S, Miyawaki K, Yamashita H (2017) ChemCatChem 9(18):3456–3462

    Article  CAS  Google Scholar 

  18. Navlani-Garcia M, Martis M, Lozano-Castellô D, Cazorla-Amorôs D, Mori K, Yamashita H (2015) Catal Sci Technol 5:364–371

    Article  CAS  Google Scholar 

  19. Dai H, Xia B, Wen L, Du C, Su J, Luo W, Cheng G (2015) Appl Catal B 165:57–62

    Article  CAS  Google Scholar 

  20. Gao ST, Liu W, Feng C, Shang NZ, Wang C (2016) Catal Sci Technol 6:869–874

    Article  CAS  Google Scholar 

  21. Sponholz P, Mellmann D, Junge H, Beller M (2013) ChemSusChem 6(7):1172–1176

    Article  CAS  PubMed  Google Scholar 

  22. Sanchez F, Alotaibi MH, Motta D, Chan-Thaw CE et al (2018) Sustain Energy Fuels 2(12):2705–2716

    Article  CAS  Google Scholar 

  23. Yan H, Cheng H, Yi H, Lin Y, Yao T, Wang C, Li J, Wei S, Lu J (2015) J Am Chem Soc 137(33):10484–10487

    Article  CAS  PubMed  Google Scholar 

  24. Chen Y, Wang L, Zhai Y, Chen H, Dou Y, Li J, Zheng H, Cao R (2017) RSC Adv 7(51):32310–32315

    Article  CAS  Google Scholar 

  25. Sheldon RA, Arends IWCE, Dijksman A (2000) Catal Today 57(1–2):157–166

    Article  CAS  Google Scholar 

  26. Salimian M, Ivanov M, Deepak FL, Petrovykh DY, Bdikin I, Ferro M, Kholkin A, Titus E, Goncalves G (2015) J Mater Chem C 3:11516–11523

    Article  CAS  Google Scholar 

  27. Zhai Y, Zhu Z, Dong S (2015) ChemCatChem 7(18):2806–2815

    Article  CAS  Google Scholar 

  28. Lopez-Sanches JA, Dimitratos N, Miedziak P, Ntainjua E, Edwards JK, Morgan D, Carley AF, Tiruvalam R, Kiely CJ, Hutchings GJ (2008) Phys Chem Chem Phys 10(14):1921–1930

    Article  CAS  Google Scholar 

  29. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) ACS Nano 4(8):4806–4814

    Article  CAS  PubMed  Google Scholar 

  30. Felipe S, Davide M, Alberto R, Ceri H, Alberto V, Nikolaos D (2018) Top Catal 61:254–266

    Article  CAS  Google Scholar 

  31. Chen J, Yao B, Li C, Shi G (2013) Carbon 64:225–229

    Article  CAS  Google Scholar 

  32. Zhang Y, Ren L, Wang S, Marathe A, Chaudhuri J, Li G (2011) J Mater Chem 21(14):5386–5391

    Article  CAS  Google Scholar 

  33. Ferrari AC (2007) Solid State Commun 143(1–2):47–57

    Article  CAS  Google Scholar 

  34. Cancado LG, Takai K, Enoki T, Endo M, Kim YA, Mizusaki H, Jorio A, Coelho LN, Magalhães-Paniago R, Pimenta MA (2006) Appl Phys Lett 88:163106

    Article  CAS  Google Scholar 

  35. Cai C, Sang N, Shen S, Zhao X (2017) J Exp Nanosci 12(1):247–262

    Article  CAS  Google Scholar 

  36. Mazumder V, Sun S (2009) J Am Chem Soc 131(13):4588–4589

    Article  CAS  PubMed  Google Scholar 

  37. Wang X, Qi GW, Tan CH, Li YP, Guo J, Pang XJ, Zhang SY (2014) Int J Hydrog Energy 39(2):837–843

    Article  CAS  Google Scholar 

  38. Hu C, Pulleri JK, Ting SW, Chan KY (2014) Int J Hydrog Energy 39(1–2):381–390

    Article  CAS  Google Scholar 

  39. Ping Y, Yan JM, Wang ZL, Wang HL, Jiang Q (2013) J Mater Chem A 1(39):12188–12191

    Article  CAS  Google Scholar 

  40. Metin Ӧ, Sun X, Sun S (2013) Nanoscale 5(3):910–912

    Article  CAS  PubMed  Google Scholar 

  41. Zhou X, Huang Y, Xing W, Liu C, Liao J, Lu T (2008) Chem Commun 30:3540–3542

    Article  CAS  Google Scholar 

  42. Jiang K, Xu K, Zou S, Cai W (2014) J Am Chem Soc 136(13):4861–4864

    Article  CAS  PubMed  Google Scholar 

  43. Wang ZL, Yan JM, Wang HL, Ping Y, Jiang Q (2012) Sci Rep 2:598–604

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors offer their heartfelt thanks to Al-Qadisiyah University for offering financial assistance for a part of this work. The writers do wish to thank all the representatives of the Al-Qadisiyah University Chemistry Department for their support and guidance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas Al-Nayili.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadhem, A.A., Al-Nayili, A. Dehydrogenation of Formic Acid in Liquid Phase over Pd Nanoparticles Supported on Reduced Graphene Oxide Sheets. Catal Surv Asia 25, 324–333 (2021). https://doi.org/10.1007/s10563-021-09332-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-021-09332-w

Keywords

Navigation