Skip to main content
Log in

Controlled Synthesis of TiO2 Shape and Effect on the Catalytic Performance for Selective Catalytic Reduction of NOx with NH3

  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

In this paper, the shapes of TiO2 were regulated by changing the solvent and hydrothermal temperature. CeO2–WO3/TiO2 catalysts were further synthesized by impregnation method and used for selective catalytic reduction (SCR) of NOx. By a series of regulations, the SCR performance was improved by the further modulation of TiO2 shape. The results showed that with the hydrothermal temperature increase from 80 to 200 °C, and the shape of catalysts emerged particle state, rod-like structure, flower-like structure and large particle state, respectively. The formation process of flower-like TiO2 was proposed according to the shape change with the increase of hydrothermal temperature. Prominently, the shape of TiO2 precursor would change the crystallographic plane of CeO2–WO3/TiO2-A catalysts. When the hydrothermal temperature was 120 °C, the catalysts showed the best SCR performance. This might be due to the high surface atomic ratio of Oα/(Oα + Oβ) and the high transformation of Ce3+ and Ce4+, which were beneficial for the SCR performance. CeO2–WO3/TiO2-A-120 also exhibited an excellent resistance of H2O. However, when enduring the SO2 or both enduring the SO2 and H2O, the activity of catalysts had an obvious decrease due to the production of Ce2(SO4)3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Xiao X, Sheng Z, Yang L, Dong F (2016) Catal Sci Technol 6:1507–1514

    Article  CAS  Google Scholar 

  2. Wu Z, Jin R, Liu Y, Wang H (2008) Catal Commun 9:2217–2220

    Article  CAS  Google Scholar 

  3. Qi G, Yang RT, Chang R (2004) Appl Catal B Environ 51:93–106

    Article  CAS  Google Scholar 

  4. Casapu M, Krocher O, Elsener M (2009) Appl Catal B Environ 88:413–419

    Article  CAS  Google Scholar 

  5. Qi G, Yang RT (2003) Appl Catal B Environ 44:217–225

    Article  CAS  Google Scholar 

  6. Li J, Chen J, Ke R, Luo C, Hao J (2007) Catal Commun 8:1896–1900

    Article  CAS  Google Scholar 

  7. Qi G, Yang RT (2003) J Catal 217:434–441

    Article  CAS  Google Scholar 

  8. Qiu Y, Liu B, Du J, Tang Q, Liu Z, Liu R, Tao C (2016) Chem Eng J 294:264–272

    Article  CAS  Google Scholar 

  9. Peng Y, Li J, Chen L, Chen J, Han J, Zhang H, Han W (2012) Environ Sci Technol 46:2864–2869

    Article  CAS  Google Scholar 

  10. Alemany L, Lietti L, Ferlazzo N, Forzatti P, Busca G, Giamello E, Bregani F (1995) J Catal 155:117–130

    Article  CAS  Google Scholar 

  11. Kleemann M, Elsener M, Koebel M, Wokaun A (2000) Ind Eng Chem Res 39:4120–4126

    Article  CAS  Google Scholar 

  12. Yan N, Chen W, Chen J, Qu Z, Guo Y, Yang S, Jia J (2011) Environ Sci Technol 45:5725–5730

    Article  CAS  Google Scholar 

  13. Peng Y, Li J, Shi W, Xu J, Hao J (2012) Environ Sci Technol 46:12623–12629

    Article  CAS  Google Scholar 

  14. Li P, Xin Y, Li Q, Wang Z, Zhang Z, Zheng L (2012) Environ Sci Technol 46:9600–9605

    Article  CAS  Google Scholar 

  15. Li X, Li J, Peng Y, Li X, Li K, Hao J (2016) J Phys Chem C 120:18005–18014

    Article  CAS  Google Scholar 

  16. Djerad S, Tifouti L, Crocoll M, Weisweiler W (2004) J Mol Catal A Chem 208:257–265

    Article  CAS  Google Scholar 

  17. Saleh R, Wachs I, Chan S, Chersich C (1986) J Catal 98:102–114

    Article  CAS  Google Scholar 

  18. Peng Y, Si W, Li X, Chen J, Li J, Crittenden J, Hao J (2016) Environ Sci Technol 50:9576–9582

    Article  CAS  Google Scholar 

  19. Ding J, Zhong Q, Zhang S (2015) Ind Eng Chem Res 54:2012–2022

    Article  CAS  Google Scholar 

  20. Geng Y, Shan W, Xiong S, Liao Y, Yanga S, Liu F (2016) Catal Sci Technol 6:3149–3155

    Article  CAS  Google Scholar 

  21. Tang C, Zhang H, Dong L (2016) Catal Sci Technol 6:1248–1264

    Article  CAS  Google Scholar 

  22. Gao X, Jiang Y, Fu Y, Zhong Y, Luo Z, Cen K (2010) Catal Commun 11:465–469

    Article  CAS  Google Scholar 

  23. Jiang Y, Xing Z, Wang X, Huang S, Wang X, Liu Q (2015) Fuel 151:124–129

    Article  CAS  Google Scholar 

  24. Zhang Q, Liu X, Ning P, Song Z, Li H, Gu J (2015) Catal Sci Technol 5:2260–2269

    Article  CAS  Google Scholar 

  25. Xu W, He H, Yu Y (2009) J Phys Chem C 113:4426–4432

    Article  CAS  Google Scholar 

  26. Michalow-Mauke KA, Lu Y, Kowalski K, Graule T, Nachtegaal M, Kröcher O, Ferri D (2015) ACS Catal 5:5657–5672

    Article  CAS  Google Scholar 

  27. Iwasaki M, Iglesia E (2016) J Catal 342:84–97

    Article  CAS  Google Scholar 

  28. Li X, Li X, Chen J, Li J, Hao J (2016) Catal Commun 87:45–48

    Article  CAS  Google Scholar 

  29. Shan W, Liu F, He H, Shi X, Zhang C (2012) Appl Catal B Environ 115–116 100–106

  30. Nam I, Eldrldge JW, Klttrell JR (1986) Ind Eng Chem Prod Res Dev 25:192–197

    Article  CAS  Google Scholar 

  31. Dong G, Bai Y, Zhang Y, Zhao Y (2015) New J Chem 39:3588–3596

    Article  CAS  Google Scholar 

  32. Shan W, Liu F, He H, Shi X, Zhang C (2011) Chem Commun 47:8046–8048

    Article  CAS  Google Scholar 

  33. Shan W, Liu F, Yu Y, He H (2014) Chin J Catal 35:1251–1259

    Article  CAS  Google Scholar 

  34. Sun Z, Kim JH, Zhao Y, Bijarbooneh F, Malgras V, Lee Y, Kang Y, Dou SX (2011) J Am Chem Soc 133:19314–19317

    Article  CAS  Google Scholar 

  35. Cai S, Zhang D, Shi L, Xu J, Zhang L, Huang L, Li H, Zhang J (2014) Nanoscale 6:7346–7353

    Article  CAS  Google Scholar 

  36. Sun Z, Kim JH, Zhao Y, Attardb D, Dou SX (2013) Chem Commun 49:966–968

    Article  CAS  Google Scholar 

  37. Han J, Meeprasert J, Maitarad P, Nammuangruk S, Shi L, Zhang D (2016) J Phys Chem C 120:1523–1533

    Article  CAS  Google Scholar 

  38. Xu S, Zhang Y, Luo Y, Wang S, Ding H, Xu J, Li G (2013) Analyst 138:4519–4525

  39. Wang M, Ioccozia J, Sun L, Lin C, Lin Z (2014) Energy Environ Sci 7:2182–2202

    Article  CAS  Google Scholar 

  40. Zhang L, Shi L, Huang L, Zhang J, Gao R, Zhang D (2014) ACS Catal 4:1753–1763

    Article  CAS  Google Scholar 

  41. Wang H, Cao S, Fang Z, Yu F, Liu Y, Weng X, Wu Z (2015) Appl Surf Sci 330:245–252

    Article  CAS  Google Scholar 

  42. Liu J, Meeprasert J, Namuangruk S, Zha K, Li H, Huang L, Maitarad P, Shi L, Zhang D (2017) J Phys Chem C 121:4970–4979

    Article  CAS  Google Scholar 

  43. Shi Q, Li Y, Zhou Y, Miao S, Ta N, Zhan E, Liu J, Shen W (2015) J Mater Chem A 3:14409–14415

    Article  CAS  Google Scholar 

  44. Huang L, Zha K, Namuangruk S, Junkaew A, Zhao X, Li H, Shi L, Zhang D (2016) Catal Sci Technol 6:8516–8524

    Article  CAS  Google Scholar 

  45. Huang L, Hu X, Yuan S, Li H, Yan T, Shi L, Zhang D (2017) Appl Catal B Environ 203:778–788

    Article  CAS  Google Scholar 

  46. Zhou W, Liu X, Cui J, Liu D, Li J, Jiang H, Wang J, Li H (2011) CrystEngComm 13:4557–4563

    Article  CAS  Google Scholar 

  47. Zhao X, Huang L, Namuangruk S, Hu H, Hu X, Shi L, Zhang D (2016) Catal Sci Technol 6:5543–5553

    Article  CAS  Google Scholar 

  48. Tian G, Chen Y, Zhou W, Pan K, Tian C, Huang X, Fu H (2011) CrystEngComm 13:2994–3000

    Article  CAS  Google Scholar 

  49. Chen Q, Chen C, Ji H, Ma W, Zhao J (2013) RSC Adv 3:17559–17566

    Article  CAS  Google Scholar 

  50. Wang H, Cai K, Liu J, Zhang X, Li Y, Cheng K, Liu J, Li C, Ding F, Song Y (2016) RSC Adv 6:84294–84308

    Article  CAS  Google Scholar 

  51. Ma Z, Weng D, Wu X, Si Z (2012) J Environ Sci 24:1305–1316

    Article  CAS  Google Scholar 

  52. Du X, Gao X, Fu Y, Gao F, Luo Z, Cen K (2012) J Colloid Interf Sci 368:406–412

    Article  CAS  Google Scholar 

  53. Ye D, Qu R, Song H, Zheng C, Gao X, Luo Z, Ni M, Cen K (2016) RSC Adv 6:55584–55592

    Article  CAS  Google Scholar 

  54. Dupin JC, Gonbeau D, Vinatier P, Levasseur A (2000) Phys Chem Chem Phys 2:1319–1324

    Article  CAS  Google Scholar 

  55. Zhang G, Han W, Dong F, Zong L, Lu G, Tang Z (2016) RSC Adv 6:76556–76567

    Article  CAS  Google Scholar 

  56. Camposeco R, Castillo S, Mugica V, Mejía-Centeno I, Marín J (2014) Chem Eng J 242:313–320

    Article  CAS  Google Scholar 

  57. Ettireddy PR, Ettireddy N, Boningari T, Pardemann R, Smirniotis PG (2012) J Catal 292:53–63

    Article  CAS  Google Scholar 

  58. Jin D, Hou Z, Zhang L, Zheng X (2008) Catal Today 131:378–384

    Article  CAS  Google Scholar 

  59. Mamede AS, Payen E, Grange P, Poncelet G, Ion A, Alifanti M, Pârvulescu VI (2004) J Catal 223:1–12

    Article  CAS  Google Scholar 

  60. Chen L, Li R, Li Z, Yuan F, Niu X, Zhu Y (2017) Catal Sci Technol 7:3243–3257

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of Science and Technology Service Network Initiative (STS) of Chinese Academy of Science (KFJ-SW-STS-149), the National Natural Science Foundation of China (21507137, 21707145), Natural Science Foundation of GanSu Province (17jRSRA317) and Science and Technology Program of Lanzhou City (2017-4-111).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiyi Zhang or Zhicheng Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zong, L., Zhang, J., Lu, G. et al. Controlled Synthesis of TiO2 Shape and Effect on the Catalytic Performance for Selective Catalytic Reduction of NOx with NH3. Catal Surv Asia 22, 105–117 (2018). https://doi.org/10.1007/s10563-018-9244-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-018-9244-7

Keywords

Navigation