Skip to main content
Log in

Synthesis and Catalytic Property of Fibrous Titanium-Containing Graphite Oxide

  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

A new layered graphite oxide is synthesized by a two-step oxidation of commercial graphite powders, which is further covalently modified by a titanium complex in order for oxidation of alkenes. Characterizations reveal the present graphite oxide is thicker than classical graphene oxide, but shows fibrous morphology after modification of titanium complex. Furthermore, the composition and morphology of synthetic composite are highly relative to the heating condition in preparation. In catalysis, high conversions of alkenes as well as various oxidized products are obtained by using available and green terminal oxidants. Lastly, a composite catalyst is reused for nine rounds in oxidation of R-(+)-limonene, approving its satisfactory stability for recycling. This work provides a highly promising catalytic material, showing values for the design of solid catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Papastergiou M, Stathi P, Milavea ER, Deligiannakis Y, Louloudi M (2016) J Catal 341:104–115

    Article  CAS  Google Scholar 

  2. Wang ZM, Sang XL, Che CM, Chen J (2014) Tetrahedron Lett 55:1736–1739

    Article  CAS  Google Scholar 

  3. Skobelev IY, Sorokin AB, Kovalenko KA, Fedin VP, Kholdeeva OA (2013) J Catal 298:61–69

    Article  CAS  Google Scholar 

  4. Pathan S, Patel A (2014) Chem Eng J 243:183–191

    Article  CAS  Google Scholar 

  5. Moliner M, Corma A (2012) Chem Mater 24:4371–4375

    Article  CAS  Google Scholar 

  6. Inagaki S, Takechi K, Kubota Y (2010) Chem Commun 46:2662–2664

    Article  CAS  Google Scholar 

  7. Díaz-Cabañas M-J, Villaescusa LA, Camblor MA (2000) Chem Commun 36:761–762

    Article  Google Scholar 

  8. Wu P, Tatsumi T, Komatsu T, Yashima T (2001) J Phys Chem B 105:2897–2905

    Article  CAS  Google Scholar 

  9. Pan S, Aksay IA (2011) ACS Nano 5:4073–4083

    Article  CAS  Google Scholar 

  10. Bi H, Lin T, Xu F, Tang Y, Liu Z, Huang F (2016) Nano Lett 16:349–354

    Article  CAS  Google Scholar 

  11. Sadhukhan S, Ghosh TK, Rana D, Roy I, Bhattacharyya A, Sarkar G, Chakraborty M, Chattopadhyay D (2016) Mater Res Bull 79:41–51

    Article  CAS  Google Scholar 

  12. Ferrighi L, Datteo M, Fazio G, Valentin CD (2016) J Am Chem Soc 138:7365–7376

    Article  CAS  Google Scholar 

  13. Zhang H-B, Liang X-L, Dong X, Li H-Y, Lin G-D (2009) Catal Surv Asia 13:41–58

    Article  CAS  Google Scholar 

  14. Zhang L, Ni M, Liu D, Shi D, Zhang G (2012) J Phys Chem C 116:26929–26931

    Article  CAS  Google Scholar 

  15. Wong SL, Khoo KH, Quek SY, Wee ATS (2015) J Phys Chem C 119:29193–29200

    Article  CAS  Google Scholar 

  16. Arvidsson R, Kushnir D, Sandén BA, Molander S (2014) Environ Sci Technol 48:4529–4536

    Article  CAS  Google Scholar 

  17. Johari P, Shenoy VB (2011) ACS Nano 5:7640–7647

    Article  CAS  Google Scholar 

  18. Li C, Shi G (2014) Adv Mater 26:3992–4012

    Article  CAS  Google Scholar 

  19. Standley B, Mendez A, Schmidgall E, Bockrath M (2012) Nano Lett 12:1165–1169

    Article  CAS  Google Scholar 

  20. Piaggio P, Langham C, McMorn P, Bethell D, Bulman-Page PC, Hancock FE, Sly C, Hutchings GJ (2000) J Chem Soc Perkin Trans 2:143–148

    Article  Google Scholar 

  21. Canali L, Cowan E, Deleuze H, Gibson CL, Sherrington DC (2000) J Chem Soc, Perkin Trans 1:2055–2066

    Article  Google Scholar 

  22. Li X, Huang B, Li L, Niu Z, Li Y, Zhang D, Sun Y (2016) J Sol-Gel Sci Technol 80:451–461

    Article  CAS  Google Scholar 

  23. Rodríguez-González C, Martínez-Hernández AL, Castaño VM, Kharissova OV, Ruoff RS, Velasco-Santos C (2012) Ind Eng Chem Res 51:3619–3629

    Article  Google Scholar 

  24. Lohumi S, Lee S, Lee W-H, Kim MS, Mo C, Bae H, Cho B-K (2014) J Agric Food Chem 62:9246–9451

    Article  CAS  Google Scholar 

  25. Zhang H, Zhang Y, Li C (2006) J Catal 238:369–381

    Article  CAS  Google Scholar 

  26. Barroso-Bogeat A, Alexandre-Franco M, Fernández-González C, Macías-García A, Gómez-Serrano V (2016) Ind Eng Chem Res 55:5200–5206

    Article  CAS  Google Scholar 

  27. Qi Y, Yang M, Xu W, He S, Men Y (2017) J Colloid Interface Sci 486:84–96

    Article  CAS  Google Scholar 

  28. Zhuang W, He L, Zhu J, An R, Wu X, Mu L, Lu X, Lu L, Liu X, Ying H (2015) Int J Hydrog Energy 40:3679–3688

    Article  CAS  Google Scholar 

  29. Yu J, Ma T, Liu S (2011) Phys Chem Chem Phys 13:3491–3501

    Article  CAS  Google Scholar 

  30. Chen H-R, Shi J-L, Zhang W-H, Ruan M-L, Yan D-S (2001) Chem Mater 13:1035–1040

    Article  CAS  Google Scholar 

  31. Du D, Li P, Ouyang J (2015) ACS Appl Mater Interfaces 7:26952–26958

    Article  CAS  Google Scholar 

  32. Xue Y, Liu Y, Lu F, Qu J, Chen H, Dai L (2012) J Phys Chem Lett 3:1607–1612

    Article  CAS  Google Scholar 

  33. Hiyoshi N (2016) Appl Catal A 419–420:164–169

    Google Scholar 

  34. Alhassan FH, Rashid U, Taufiq-Yap YH (2015) Fuel 142:38–45

    Article  CAS  Google Scholar 

  35. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquérol J, Siemieniewska T (1985) Pure Appl Chem 57:603–619

    Article  CAS  Google Scholar 

  36. Chen W, Ni J (2017) J Hazard Mater 324:321–328

    Article  CAS  Google Scholar 

  37. Nethravathi C, Rajamathi CR, Rajamathi M, Wang X, Gautam UK, Golberg D, Bando Y (2014) ACS Nano 8:2755–2765

    Article  CAS  Google Scholar 

  38. Zhao Z-P, Li M-S, Zhang J-Y, Li H-N, Zhu P-P, Liu W-F (2012) Ind Eng Chem Res 51:9531–9539

    Article  CAS  Google Scholar 

  39. Watson MA, Lyskawa J, Zobrist C, Fournier D, Jimenez M, Traisnel M, Gengembre L, Woisel P (2010) Langmuir 26:15920–15924

    Article  CAS  Google Scholar 

  40. Viornery C, Chevolot Y, Léonard D, Aronsson B-O, Péchy P, Mathieu HJ, Descouts P, Grätzel M (2002) Langmuir 18:2582–2589

    Article  CAS  Google Scholar 

  41. Glover AJ, Cai M, Overdeep KR, Kranbuehl DE, Schniepp HC (2011) Macromolecules 44:9821–9829

    Article  CAS  Google Scholar 

  42. Christian CF, Takeya T, Szymanski MJ, Singleton DA (2007) J Org Chem 72:6183–6189

    Article  CAS  Google Scholar 

  43. Chen J, Frisbie CD, Bates FS (2009) J Phys Chem C 113:3903–3908

    Article  CAS  Google Scholar 

  44. Voronkov MV, Gontcharov AV, Kanamarlapudi RC, Richardson PF, Wang Z-M (2005) Org Process Res Dev 9:221–224

    Article  CAS  Google Scholar 

  45. Neves P, Gago S, Pereira CCL, Figueiredo S, Lemos A, Lopes AD, Gonçalves IS, Pillinger M, Silva CM, Valente AA (2009) Catal Lett 132:94–103

    Article  CAS  Google Scholar 

  46. Dhar P, Chan P, Cohen DT, Khawam F, Gibbons S, Snyder-Leiby T, Dickstein E, Rai PK, Watal G (2014) J Agric Food Chem 62:3548–3552

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Fundamental Research Funds for the Central Universities (No. xjj2014005, Application of Porous Helical Materials in Catalytic Asymmetric Reactions).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoyong Li or Yang Sun.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 8588 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, C., Huang, B., Li, X. et al. Synthesis and Catalytic Property of Fibrous Titanium-Containing Graphite Oxide. Catal Surv Asia 21, 160–174 (2017). https://doi.org/10.1007/s10563-017-9233-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-017-9233-2

Keywords

Navigation