Skip to main content
Log in

Direct Synthesis of Hydrogen Peroxide from Hydrogen and Oxygen Using Tailored Pd Nanocatalysts: A Review of Recent Findings

  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

Direct synthesis of hydrogen peroxide from hydrogen and oxygen is being actively studied as an alternative to the current manufacturing process. The direct synthesis route has not reached the point of commercialization because of low yields, but significant effort is being spent on enhancing the productivity. With advances in computational capacity, simulation studies based on DFT calculations now offer directions for catalyst improvement, but such modifications can only be realized through the application of nanoparticle synthesis techniques that allow for nanocrystal morphology and size control and unique immobilization. To date, there have only been a small number of studies on such nanoparticles with size and crystallographic homogeneity for the direct hydrogen peroxide synthesis. According to our knowledge no other group has systematically investigated application of nanoparticles in direct synthesis of hydrogen peroxide, and thus included in this review are primarily previous studies conducted by our group. In this review, we discuss the utilization of nanotechnology for the synthesis of Pd catalysts and its effect on the direct synthesis of hydrogen peroxide, and we suggest a direction for future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 3
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chai XS, Hou QX, Luo Q, Zhu JY (2004) Anal Chim Acta 507:281–284

    Article  CAS  Google Scholar 

  2. Ksibi M (2006) Chem Eng J 119:161–165

    Article  CAS  Google Scholar 

  3. Kern W (1990) J Electrochem Soc 137:1887–1892

    Article  CAS  Google Scholar 

  4. Watts RJ, Dilly SE (1996) J Hazard Mater 51:209–224

    Article  CAS  Google Scholar 

  5. Mantegazza MA, Petrini G, Spanò G, Bagatin R, Rivetti F (1999) J Mol Catal A 146:223–228

    Article  CAS  Google Scholar 

  6. Shun-An C, Jin-Chang Z, Hasebe K, Hu W (1996) Anal Chim Acta 331:257–262

    Article  Google Scholar 

  7. Clerici MG, Bellussi G, Romano U (1991) J Catal 129:159–167

    Article  CAS  Google Scholar 

  8. Cao W, Sun C, Qiu J, Li X, Liu R, Zhang L (2016) Korean J Chem Eng 33:873–879

    Article  CAS  Google Scholar 

  9. Antonyraj CA, Jeong J, Kim B, Shin S, Kim S, Lee K-Y, Cho JK (2013) J Ind Eng Chem 19:1056–1059

    Article  CAS  Google Scholar 

  10. Gopal R (2014) Growing commercial scale deployment of HPPO plants to drive the global market for hydrogen peroxide. Global Industry Analysts, Inc. http://www.prweb.com/releases/hydrogen_peroxide_market/chemical_industry/prweb11914455.htm

  11. Campos-Martin JM, Blanco-Brieva G, Fierro JLG (2006) Angew Chem Int Ed 45:6962–6984

    Article  CAS  Google Scholar 

  12. Edwards JK, Freakley SJ, Lewis RJ, Pritchard JC, Hutchings GJ (2015) Catal Today 248:3–9

    Article  CAS  Google Scholar 

  13. Lobyntseva E, Kallio T, Alexeyeva N, Tammeveski K, Kontturi K (2007) Electrochim Acta 52:7262–7269

    Article  CAS  Google Scholar 

  14. Fu L, You S-J, Yang F-L, Gao M-M, Fang X-H, Zhang G-Q (2010) J Chem Technol Biotechnol 85:715–719

    Article  CAS  Google Scholar 

  15. Zhou J, Guo H, Wang X, Guo M, Zhao J, Chen L, Gong W (2005) Chem Commun 1631–1633

  16. Choudhary VR, Jana P (2009) Appl Catal A 352:35–42

    Article  CAS  Google Scholar 

  17. Choudhary VR, Samanta C (2006) J Catal 238:28–38

    Article  CAS  Google Scholar 

  18. Choudhary VR, Samanta C, Choudhary TV (2006) J Mol Catal A 260:115–120

    Article  CAS  Google Scholar 

  19. Choudhary VR, Samanta C, Jana P (2007) Appl Catal A 317:234–243

    Article  CAS  Google Scholar 

  20. Gemo N, Biasi P, Canu P, Menegazzo F, Pinna F, Samikannu A, Kordás K, Salmi T, Mikkola J-P (2013) Top Catal 56:540–549

    Article  CAS  Google Scholar 

  21. Kim S, Lee D-W, Lee K-Y (2014) J Mol Catal A 391:48–54

    Article  CAS  Google Scholar 

  22. Kim S, Lee D-W, Lee K-Y (2014) J Mol Catal A 383–384:64–69

    Article  Google Scholar 

  23. Kim S, Lee D-W, Lee K-Y, Cho E (2014) Catal Lett 144:905–911

    Article  CAS  Google Scholar 

  24. Lunsford JH (2003) J Catal 216:455–460

    Article  CAS  Google Scholar 

  25. Tian P, Ouyang L, Xu X, Xu J, Han Y-F (2013) Chin J Catal 34:1002–1012

    Article  CAS  Google Scholar 

  26. Lee H, Kim S, Lee D-W, Lee K-Y (2011) Catal Commun 12:968–971

    Article  CAS  Google Scholar 

  27. Chen Q, Beckman EJ (2007) Green Chem 9:802–808

    Article  CAS  Google Scholar 

  28. Menegazzo F, Signoretto M, Frison G, Pinna F, Strukul G, Manzoli M, Boccuzzi F (2012) J Catal 290:143–150

    Article  CAS  Google Scholar 

  29. Samanta C, Choudhary VR (2007) Appl Catal A 326:28–36

    Article  CAS  Google Scholar 

  30. Ntainjua N E, Edwards JK, Carley AF, Lopez-Sanchez JA, Moulijn JA, Herzing AA, Kiely CJ, Hutchings GJ (2008) Green Chem 10:1162–1169

    Article  Google Scholar 

  31. Cavani F, Centi G, Perathoner S, Trifiro F (2009) Sustainable industrial chemistry. Wiley-VCH, Weinheim

    Book  Google Scholar 

  32. Melada S, Pinna F, Strukul G, Perathoner S, Centi G (2006) J Catal 237:213–219

    Article  CAS  Google Scholar 

  33. Liu Q, Lunsford JH (2006) Appl Catal A 314:94–100

    Article  CAS  Google Scholar 

  34. Melada S, Rioda R, Menegazzo F, Pinna F, Strukul G (2006) J Catal 239:422–430

    Article  CAS  Google Scholar 

  35. Burch R, Ellis PR (2003) Appl Catal B 42:203–211

    Article  CAS  Google Scholar 

  36. Landon P, Collier PJ, Carley AF, Chadwick D, Papworth AJ, Burrows A, Kiely CJ, Hutchings GJ (2003) Phys Chem Chem Phys 5:1917–1923

    Article  CAS  Google Scholar 

  37. Seo M-G, Kim S, Lee D-W, Jeong HE, Lee K-Y (2016) Appl Catal A 511:87–94

    Article  CAS  Google Scholar 

  38. Park S, Lee SH, Song SH, Park DR, Baeck S-H, Kim TJ, Chung Y-M, Oh S-H, Song IK (2009) Catal Commun 10:391–394

    Article  CAS  Google Scholar 

  39. Park S, Lee J, Song JH, Kim TJ, Chung Y-M, Oh S-H, Song IK (2012) J Mol Catal A 363–364:230–236

    Article  Google Scholar 

  40. Abate S, Centi G, Melada S, Perathoner S, Pinna F, Strukul G (2005) Catal Today 104:323–328

    Article  CAS  Google Scholar 

  41. Liu Q, Lunsford JH (2006) J Catal 239:237–243

    Article  CAS  Google Scholar 

  42. Li J, Staykov A, Ishihara T, Yoshizawa K (2011) J Phys Chem C 115:7392–7398

    Article  CAS  Google Scholar 

  43. Staykov A, Kamachi T, Ishihara T, Yoshizawa K (2008) J Phys Chem C 112:19501–19505

    Article  CAS  Google Scholar 

  44. Rossi U, Zancanella S, Artiglia L, Granozzi G, Canu P (2012) Chem Eng J 207–208:845–850

    Article  Google Scholar 

  45. Zhou B, Lee L-K (2001) Catalyst and process for direct catalystic production of hydrogen peroxide, (H2O2). US6168775 B1

  46. Samanta C (2008) Appl Catal A 350:133–149

    Article  CAS  Google Scholar 

  47. Dittmeyer R, Grunwaldt JD, Pashkova A (2015) Catal Today 248:149–159

    Article  CAS  Google Scholar 

  48. Pashkova A, Dittmeyer R (2015) Catal Today 248:128–137

    Article  CAS  Google Scholar 

  49. Ham HC, Hwang GS, Han J, Nam SW, Lim TH (2010) J Phys Chem C 114:14922–14928

    Article  CAS  Google Scholar 

  50. Krishnan VV, Dokoutchaev AG, Thompson ME (2000) J Catal 196:366–374

    Article  CAS  Google Scholar 

  51. Park JC, Song H (2011) Nano Res 4:33–49

    Article  CAS  Google Scholar 

  52. Jin M, Zhang H, Xie Z, Xia Y (2012) Energy Environ Sci 5:6352–6357

    Article  CAS  Google Scholar 

  53. Lim B, Jiang M, Tao J, Camargo PHC, Zhu Y, Xia Y (2009) Adv Funct Mater 19:189–200

    Article  CAS  Google Scholar 

  54. Ghedini E, Menegazzo F, Signoretto M, Manzoli M, Pinna F, Strukul G (2010) J Catal 273:266–273

  55. Jeong HE, Kim S, Seo M-G, Lee D-W, Lee K-Y (2016) J Mol Catal A 420:88–95

    Article  CAS  Google Scholar 

  56. Wilson NM, Flaherty DW (2016) JACS 138:574–586

    Article  CAS  Google Scholar 

  57. Van Hardeveld R, Hartog F (1969) Surf Sci 15:189–230

    Article  Google Scholar 

  58. Deguchi T, Iwamoto M (2013) J Phys Chem C 117:18540–18548

    Article  CAS  Google Scholar 

  59. Deguchi T, Iwamoto M (2011) J Catal 280:239–246

    Article  CAS  Google Scholar 

  60. Deguchi T, Iwamoto M (2011) Int Eng Chem Res 50:4351–4358

    Article  CAS  Google Scholar 

  61. Choudhary VR, Jana P (2007) J Catal 246:434–439

    Article  CAS  Google Scholar 

  62. Choudhary VR, Gaikwad AG (2003) React Kinet Catal Lett 80:27–32

    Article  CAS  Google Scholar 

  63. Kim J, Chung Y-M, Kang S-M, Choi C-H, Kim B-Y, Kwon Y-T, Kim TJ, Oh S-H, Lee C-S (2012) ACS Catal 2:1042–1048

    Article  CAS  Google Scholar 

  64. Joo SH, Park JY, Tsung C-K, Yamada Y, Yang P, Somorjai GA (2009) Nat Mater 8:126–131

    Article  CAS  Google Scholar 

  65. Han L, Zhu C, Hu P, Dong S (2013) RSC Adv 3:12568–12570

    Article  CAS  Google Scholar 

  66. Liu W, Zhong W, Jiang HY, Tang NJ, Wu XL, Du WY (2005) Eur Phys J B 46:471–474

    Article  CAS  Google Scholar 

  67. Sun H, He J, Wang J, Zhang S-Y, Liu C, Sritharan T, Mhaisalkar S, Han M-Y, Wang D, Chen H (2013) JACS 135:9099–9110

    Article  CAS  Google Scholar 

  68. Tripathy SK, Mishra A, Jha SK, Wahab R, Al-Khedhairy AA (2013) Anal Methods 5:1456–1462

    Article  CAS  Google Scholar 

  69. Meir N, Jen-La Plante I, Flomin K, Chockler E, Moshofsky B, Diab M, Volokh M, Mokari T (2013) J Mater Chem A 1:1763–1769

    Article  CAS  Google Scholar 

  70. Yin H, Ma Z, Chi M, Dai S (2011) Catal Today 160:87–95

    Article  CAS  Google Scholar 

  71. Lin F-H, Doong R-A (2011) J Phys Chem C 115:6591–6598

    Article  CAS  Google Scholar 

  72. Qi J, Chen J, Li G, Li S, Gao Y, Tang Z (2012) Energy Environ Sci 5:8937–8941

    Article  CAS  Google Scholar 

  73. Ntainjua NE, Piccinini M, Pritchard JC, Edwards JK, Carley AF, Moulijn JA, Hutchings GJ (2009) ChemSusChem 2:575–580

    Article  Google Scholar 

  74. Han Y-F, Lunsford JH (2005) J Catal 230:313–316

    Article  CAS  Google Scholar 

  75. Park S, Seo JG, Jung JC, Baeck S-H, Kim TJ, Chung Y-M, Oh S-H, Song IK (2009) Catal Commun 10:1762–1765

    Article  CAS  Google Scholar 

  76. Kim S, Yin Y, Alivisatos AP, Somorjai GA, Yates JT (2007) JACS 129:9510–9513

    Article  CAS  Google Scholar 

  77. Yin Y, Rioux RM, Erdonmez CK, Hughes S, Somorjai GA, Alivisatos AP (2004) Science 304:711–714

    Article  CAS  Google Scholar 

  78. Park JC, Bang JU, Lee J, Ko CH, Song H (2010) J Mater Chem 20:1239–1246

    Article  CAS  Google Scholar 

  79. Park J, Song H (2011) Nano Res 4:33–49

    Article  CAS  Google Scholar 

  80. Park JC, Heo E, Kim A, Kim M, Park KH, Song H (2011) J Phys Chem C 115:15772–15777

    Article  CAS  Google Scholar 

  81. Ma D, Dou P, Yu X, Yang H, Meng H, Sun Y, Zheng J, Xu X (2015) Mater Lett 157:228–230

    Article  CAS  Google Scholar 

  82. Seo M-G, Kim S, Jeong HE, Lee D-W, Lee K-Y (2016) J Mol Catal A 413:1–6

    Article  CAS  Google Scholar 

  83. Edwards JK, Hutchings GJ (2008) Angew Chem Int Ed 47:9192–9198

    Article  CAS  Google Scholar 

  84. Liu Q, Bauer JC, Schaak RE, Lunsford JH (2008) Appl Catal A 339:130–136

    Article  CAS  Google Scholar 

  85. Menegazzo F, Signoretto M, Manzoli M, Boccuzzi F, Cruciani G, Pinna F, Strukul G (2009) J Catal 268:122–130

    Article  CAS  Google Scholar 

  86. Freakley SJ, He Q, Harrhy JH, Lu L, Crole DA, Morgan DJ, Ntainjua EN, Edwards JK, Carley AF, Borisevich AY, Kiely CJ, Hutchings GJ (2016) Science 351:965–968

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP) (NRF-2016M3D1A1021143). This work was supported by the Human Resources Development program (No. 20134010200600) of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Trade, Industry and Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwan-Young Lee.

Additional information

Myung-gi Seo and Ho Joong Kim have contributed equally to the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seo, Mg., Kim, H.J., Han, S.S. et al. Direct Synthesis of Hydrogen Peroxide from Hydrogen and Oxygen Using Tailored Pd Nanocatalysts: A Review of Recent Findings. Catal Surv Asia 21, 1–12 (2017). https://doi.org/10.1007/s10563-016-9221-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-016-9221-y

Keywords

Navigation