Skip to main content
Log in

Design of a Highly Efficient Indium-Exchanged Heteropolytungstic Acid for Glycerol Esterification with Acetic Acid

  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

A series of highly active, selective, and stable solid indium-exchanged tungstophosphoric acid catalysts had been prepared, characterized and evaluated for bio-derived glycerol esterification with acetic acid to produce valuable biofuel additives. It was found that the Inx/3H3−xPW with nanotube structure owns Lewis acidity and Brønsted acidity in one, which favors for the efficient esterification of glycerol into monoglycerides with higher selectivity. Among all, In0.8H0.6PW presented exceptionally high activity with 88 % conversion and 96 % selectivity to MAG within 30 min of reaction time at 120 °C using 4:1 molar ratio. The better performance came from its remarkable stability, due to the unique Keggin structure, high acidity as well as nanotube structure. In addition, this In0.8H0.6PW catalyst did not suffer from deactivation of water in the six consecutive reaction tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Salvi BL, Panwar NL (2012) Renew Sustain Energy Rev 16:3680–3689

    Article  CAS  Google Scholar 

  2. Abad S, Turon X (2012) Biotechnol Adv 30:733–741

    Article  CAS  Google Scholar 

  3. Gonçalves CE, Laier LO, Cardoso AL, da Silva MJ (2012) Fuel Process Technol 10:246–252

    Google Scholar 

  4. Liu L, Ye XP, Bozell JJ (2012) ChemSusChem 5:1162–1180

    Article  CAS  Google Scholar 

  5. Stelmachowski M (2011) Ecol Chem Eng S 18:9–30

    CAS  Google Scholar 

  6. Serrano-Ruiz JC, Luque R, Sepúlveda-Escribano A (2011) Chem Soc Rev 40:5266–5281

    Article  CAS  Google Scholar 

  7. Ferreira P, Fonseca IM, Ramos AM, Vital J, Castanheiro JE (2009) Appl Catal B 91:416–422

    Article  CAS  Google Scholar 

  8. Nabeshima H, Ito K (1995) JP patent 276787

  9. Hofmann P (1985) DE Patent 3,512,497

  10. Nomura S, Hyoshi T (1995) JP Patent 203,429

  11. Taguchi Y, Oishi A, Ikeda Y, Fujita K, Masuda T (2000) JP Patent 298,099

  12. Li E, Xu ZP, Rudolph V (2009) Appl Catal B 88:42–49

    Article  CAS  Google Scholar 

  13. Behr A, Gomes JP (2010) Eur Lipid Sci Technol 112:31–50

    Article  CAS  Google Scholar 

  14. Melero JA, van Grieken R, Morales G, Paniagua M (2007) Energy Fuels 211:782–791

    Google Scholar 

  15. Zhou LM, Al-Zaini E, Adesina AA (2013) Fuel 103:617–625

    Article  CAS  Google Scholar 

  16. Goncalves VLC, Pinto BP, Silva JC, Mota CJA (2008) Catal Today 133–135:673–677

    Article  Google Scholar 

  17. Luque R, Budarin V, Clark JH, Macquarrie DJ (2008) Appl Catal B 82:157–162

    Article  CAS  Google Scholar 

  18. Liu XM, Ma H, Wu Y, Wang C, Yang M, Yan P, Welz-Biermann U (2011) Green Chem 13:697–701

    Article  CAS  Google Scholar 

  19. Gonçalves CE, Laier LO, Silva MJ (2011) Catal Lett 14:11111–11117

    Google Scholar 

  20. Trejda M, Stawicka K, Dubinska A, Ziolek M (2012) Catal Today 187:129–134

    Article  CAS  Google Scholar 

  21. Jagadeeswaraiah K, Balaraju M, Sai Prasad PS, Lingaiah N (2010) Appl Catal A 386:166–170

    Article  CAS  Google Scholar 

  22. Balaraju M, Nikhitha P, Jagadeeswaraiah K, Srilatha K, Sai Prasad PS, Lingaiah N (2010) Fuel Pro Tech 91:249–253

    Article  CAS  Google Scholar 

  23. Li W, Oshihara K, Ueda W (1999) Appl Catal A 182:357–363

    Article  CAS  Google Scholar 

  24. Khayoon MS, Hameed BH (2012) Appl Catal A 433–434:152–161

    Article  Google Scholar 

  25. Ferreira P, Fonseca IM, Ramos AM, Vital J (2009) Catal Commun 10:481–484

    Article  CAS  Google Scholar 

  26. Zhu SH, Zhu YL, Gao XQ, Mo T, Zhu YF, Li YW (2013) Bioresour Technol 130:45–51

    Article  CAS  Google Scholar 

  27. Patel A, Singh S (2014) Fuel 118:358–364

    Article  CAS  Google Scholar 

  28. Lopez DE, Goodwin JG Jr, Bruce DA (2005) Lotero E Appl Catal A 295:97–105

    Article  CAS  Google Scholar 

  29. Hattori H (2010) Top Catal 53:432–438

    Article  CAS  Google Scholar 

  30. Yan S, DiMaggio C, Mohan S, Kim M, Salley SO, Simon KY (2010) Top Catal 53:721–736

    Article  CAS  Google Scholar 

  31. Borges ME, Díaz L (2012) Renew Sustain Energy Rev 16:2839–2849

    Article  CAS  Google Scholar 

  32. Zhu SH, Gao XQ, Dong F, Zhu YL, Zheng HY, Li YW (2013) J Catal 306:155–163

    Article  CAS  Google Scholar 

  33. Jagadeeswaraiah K, Ramesh Kumar CH, Sai Prasad PS, Lingaiah N (2014) Catal Sci Technol 4:2969–2977

    Article  CAS  Google Scholar 

  34. Loh TP, Chua GL (2006) Chem Commun 26:2739–2749

    Article  Google Scholar 

  35. Rocchiccioli-Deltcheff C, Fournier M, Franck R, Thouvenot R (1983) Inorg Chem 22:207–216

    Article  CAS  Google Scholar 

  36. Pizzio LR, Blanco MN (2007) Microporous Mesoporous Mater 103:40–47

    Article  CAS  Google Scholar 

  37. Emeis CA (1993) J Catal 141:347

    Article  CAS  Google Scholar 

  38. Parry EP (1963) J Catal 2:371–379

    Article  CAS  Google Scholar 

  39. Jermy BR, Pandurangan A (2005) J Mol Catal A 237:146–154

    Article  CAS  Google Scholar 

  40. Pagliaro M, Ciriminna R, Kimura H, Rossi M, Pina CD (2007) Angew Chem 119:4516–4522

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (20871026). Supported by “the Fundamental Research Funds for the Central Universities” (10JCXK011). Supported by the major projects of Jilin Provincial Science and Technology Department (20140204085GX).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaohong Wang or Dandan Zhou.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 222 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Z., Duan, X., Tao, M. et al. Design of a Highly Efficient Indium-Exchanged Heteropolytungstic Acid for Glycerol Esterification with Acetic Acid. Catal Surv Asia 20, 82–90 (2016). https://doi.org/10.1007/s10563-016-9209-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-016-9209-7

Keywords

Navigation