Skip to main content

Advertisement

Log in

Density Functional Study of Catalytic Activity of Cu12TM for Water Gas Shift Reaction

  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

Based on density functional theory calculations, we have systematically studied the WGS reaction on various nanosized Cu12TM of Co, Ni, Cu (from the 3d row), Rh, Pd, Ag (from the 4d row), Ir, Pt, Au (from the 5d row). The reaction mechanism proposed by Langmuir–Hinshelwood has been followed, which corresponds to \({\text{CO* + OH* }} \to {\text{COOH*}} \to {\text{CO}}_{2} {\text{ + H*}}\). The comparison of the Gibbs free energy profiles of carboxyl mechanism on different Cu12TM systems concludes that WGS reaction is determined by the steps of H2 forming and OH* reacting with CO* to form COOH*. BEP relationship between activation barriers (Ea) and reaction energies (ΔH) on a series of Cu12TM clusters is very good. What’s more, the activation barrier of rate-determining step of Cu12Au is the smallest. TOF, with the aid of An Energetic Span Model (ESM), is used to estimate the efficiency of the different Cu12TM clusters. The results show that the values of TOFs in doping Cu12Rh, Cu12Ir and Cu12Pt are smaller than that in pure Cu. Moreover, the values of TOFs in doping Cu12Co, Cu12Ni, Cu12Pd, Cu12Ag, and Cu12Au are higher than that in Cu13. The higher value of TOF, the more favorable catalysts they are. This results shoud be helpful in developing efficient catalysts for WGS reaction. Finally, d-band center is used to explain the binding energy of CO and H2O. It shows that there is a good liner relationship between d-band center and binding energy of CO but not for H2O.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Landon P, Collier PJ, Papworth AJ, Kiely CJ, Hutchings GJ (2002) Chem Commun 18:2058–2059

    Article  Google Scholar 

  2. Hughes MD, Xu Y, Jenkins P, McMorn P, Landon P, Enache DI, Carley AF, Attard GA, Hutchings GJ, King F, Stitt EH, Johnston P, Griffin K, Kiely CJ (2005) Nature 437:1132–1135

    Article  CAS  Google Scholar 

  3. Fu Q, Saltsburg H, Flytzani-Stephanopoulos M (2003) Science 301:935–939

    Article  CAS  Google Scholar 

  4. Storch HH, Golumbic N, Anderson RB (1951) The Fischer-Tropsch Synthesis. Wiley, New York

    Google Scholar 

  5. Storch HH, Golumbic N, Anderson RB (1970) Catalyst Handbook, Chapters 5 and 6. Springer, London

    Google Scholar 

  6. Keim W (ed) (1983) Catalysis in C1 Chemistry. D. Reidel Publishing Co, Dordrecht, pp 50–136

    Google Scholar 

  7. Shelef M, Gandhi HS (1975) Ind Eng Chem Prod Res Dev 13:80

    Article  Google Scholar 

  8. Querido R, Short WL (1973) Ind Eng Chem Process Des Dev 12:10

    Article  CAS  Google Scholar 

  9. Lin GI, Samokhin PV, Kaloshkin SD, Rozovskii AY (1998) Kinet Catal 39:577

    CAS  Google Scholar 

  10. Grenoble DC, Estadt MM, Ollis DF (1981) J Catal 67:90–102

    Article  CAS  Google Scholar 

  11. Newsome DS (1980) Catal Rev Sci Eng 21:275–318

    Article  CAS  Google Scholar 

  12. Nakamura J, Campbell JM, Campbell CT (1990) J Chem Soc Faraday Trans 86:2725–2734

    Article  Google Scholar 

  13. Spasov VA, Lee TH, Ervin KM (2000) J Chem Phys 112:1713–1720

    Article  CAS  Google Scholar 

  14. Kabir M, Mookerjee A, Datta RP, Banerjea A, Bhattacharya AK (2003) Int J Mod Phys B 17:2061–2075

    Article  CAS  Google Scholar 

  15. Mukul K, Abhijit M (2004) Phys Rev A 69:043203

    Article  Google Scholar 

  16. Knudsen J, Nilekar AU, Vang RT, Schnadt J, Kunkes EL, Dumesic JA, Mavrikakis M, Besenbacher F (2007) J Am Chem Soc 129:6485–6490

    Article  CAS  Google Scholar 

  17. Su W, Qian P, Liu Y, Shen J, Chen NX (2010) Comput Phys Commun 181:726–731

    Article  CAS  Google Scholar 

  18. Zhang R, George TA, Kharel P, Skomski R, Sellmyer DJ (2013) J Appl Phys 113:17E148

    Google Scholar 

  19. Elizabeth F, Fanor F, Francesc I (2012) Surf Sci 606:1010–1018

    Article  Google Scholar 

  20. Liu X, Wang A, Li L, Zhang T, Mou CY, Lee JF (2011) J Catal 278:288–296

    Article  CAS  Google Scholar 

  21. Linke R, Schneider U, Busse H, Becker C, Schröder U, Castro GR, Wandelt K (1994) Surf Sci 307–309:407–411

    Article  Google Scholar 

  22. Kummer JT (1975) J Catal 38:166–171

    Article  CAS  Google Scholar 

  23. Vadlamannati LS, Kovalchuk VI, Itri JL (1999) Catal Lett 58:173–178

    Article  CAS  Google Scholar 

  24. Vidal AB, Liu P (2012) Phys Chem Chem Phys 14:16626–16632

    Article  CAS  Google Scholar 

  25. Bunluesin T, Gorte RJ, Graham GW (1998) Appl Catal B 15:107–114

    Article  CAS  Google Scholar 

  26. Fu Q, Weber A, Flytzani-Stephanopoulos M (2001) Catal Lett 77:87–95

    Article  CAS  Google Scholar 

  27. Shido T, Iwasawa YJ (1992) J Catal 136:493–503

    Article  CAS  Google Scholar 

  28. Shido T, Iwasawa YJ (1993) J Catal 141:71–81

    Article  CAS  Google Scholar 

  29. Meunier FC, Reid D, Goguest A, Shekhtman S, Hardacre C, Burch R, Deng W, Flytzani-Stephanopoulos MJ (2007) Catalysis 247:277–287

    Article  CAS  Google Scholar 

  30. Burch R (2006) Phys Chem Chem Phys 8:5483–5500

    Article  CAS  Google Scholar 

  31. Liu ZP, Jenkins SJ, King DA (2005) Phys Rev Lett 94:196102

    Article  Google Scholar 

  32. Rodriguez JA, Liu P, Hrbek H, Evans J, Perez M (2007) Angew Chem Int Ed 46:1329–1332

    Article  CAS  Google Scholar 

  33. Catapan RC, Oliveira AM, Chen Y, Vlachos DG (2012) J Phys Chem C 116:20281–20291

    Article  CAS  Google Scholar 

  34. Gokhale AA, Dumesic JA, Mavrikakis M (2008) J Am Chem Soc 130:1402–1414

    Article  CAS  Google Scholar 

  35. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi, J. Normand R, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09, Revision C. 01, Gaussian Inc, Wallingford

  36. Perdew JP, Burke K, Ernzerhof M (1996) J Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  37. Hay PJ, Wadt WR (1985) J Chem Phys 82:270–283

    Article  CAS  Google Scholar 

  38. Hay PJ, Wadt WR (1985) J Chem Phys 82:299–310

    Article  CAS  Google Scholar 

  39. Wang F, Zhang D, Xu X (2009) Ding Yi. J Phys Chem C 113:18032–18039

    Article  CAS  Google Scholar 

  40. Wang F, Zhang D, Ding Y (2010) J Phys Chem C 114:14076–14082

    Article  CAS  Google Scholar 

  41. Kozuch S, Shaik S (2010) Acc Chem Res 44:101–110

    Article  Google Scholar 

  42. Zhang YK, Yang WT (1998) Phys Rev Lett 80:890–891

    Article  CAS  Google Scholar 

  43. Huber KP, Herzberg G (1979) Constants of diatomic molecules. Van Nostrand Reinhold, New York

    Book  Google Scholar 

  44. Lide DR, Booa Raton FL (1995) CRC Press

  45. Holman CH (1972) Handbook to literature, 3rd edn. The Odyssey Press, New Work

    Google Scholar 

  46. Morse MD, Hansen GP, Laridge-Smith PR, Zheng LS, Geusic ME, Michalopoulos DL (1984) J Chem Phys 80:5400–5405

    Article  CAS  Google Scholar 

  47. Massobrio C, Pasquarello A, Car R (1995) Chem Phys Lett 238:215–221

    Article  Google Scholar 

  48. Kant A, Strauss B, Lin SS (1970) J Chem Phys 52:2384–2386

    Article  CAS  Google Scholar 

  49. Junichiro K, Toshiharu K, Satoshi S, Takashi N, Yuji O, Hiroaki N (2013) J Phys Chem C 117:5742–5751

    Google Scholar 

  50. Federico CV, Philippe S, David L (2014) J Phy Chem Lett 5:3120–3124

    Article  Google Scholar 

  51. Kozuch S, Shaik S (2006) J Am Chem Soc 128:3355–3365

    Article  CAS  Google Scholar 

  52. Kozuch S, Shaik S (2008) J Phys Chem A 112:6032–6041

    Article  CAS  Google Scholar 

  53. Hammer B, Nørskov JK (2000) Adv Catal 45:71–129

    CAS  Google Scholar 

  54. Nørskov JK, Bligaard T, Rossmeisl J, Christensen CH (2009) Nat Chem 1:37–46

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grant No. 20603021), the Natural Science Foundation of Shanxi (Grant No. 2013011009-6), the High School 131 Leading Talent Project of Shanxi, Undergraduate Training Programs for Innovation and Entrepreneurship of Shanxi Province (Grant Nos. 2013145 and 2015537) and Shanxi Normal University (SD2015CXXM-80).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Guo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 152 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Z., Guo, L., Liu, N. et al. Density Functional Study of Catalytic Activity of Cu12TM for Water Gas Shift Reaction. Catal Surv Asia 20, 63–73 (2016). https://doi.org/10.1007/s10563-015-9207-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-015-9207-1

Keywords

Navigation