Skip to main content

Advertisement

Log in

Supported NHC-Benzimi@Cu Complex as a Magnetically Separable and Reusable Catalyst for the Multicomponent and Click Synthesis of 1,4-Disubstituted 1,2,3-Triazoles via Huisgen 1,3-Dipolar Cycloaddition

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In this paper, we report a novel magnetically separable silica coated copper nano-magnetite NHC-benzimi@Cu complex as heterogeneous catalyst for the multicomponent click reaction via Huisgen 1,3-dipolar cycloaddition reaction of alkyl or aryl halide, sodium azide and terminal alkyne, which affords various1,4-disubstituted 1,2,3-triazoles. The multistep prepared nano catalyst has been characterized by various spectroscopic methods such as FT-IR, TGA, EDX, XRD, TEM and VSM. The heterogeneous nano catalyst structures coated on the copper surface are responsible for the excellent catalyst performances in the reaction. The reusability of the catalyst makes the present protocol more fascinating from an environmental and economic point of view.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 3
Fig. 7

Similar content being viewed by others

References

  1. Anil Kumar BSP, Reddy KHV, Madhav B, Ramesh K, Nageswar YVD (2012) Magnetically separable CuFe2O4 nano particles catalyzed multicomponent synthesis of 1,4-disubstituted 1,2,3-triazoles in tap water using ‘click chemistry. Tetahedron Lett 53:4595

    Article  CAS  Google Scholar 

  2. Singh MS, Chowdhury S, Koley S (2016) Advances of azide-alkyne cycloaddition-click chemistry over therecent decade. Tetrahedron 72:5257

    Article  CAS  Google Scholar 

  3. Vibhute SP, Mhaldar PM, Korade SN, Gaikwad DS, Shejawal RV, Pore DM (2018) Synthesis of magnetically separable catalyst Cu-ACP-Am-Fe3O4@SiO2 for Huisgen 1,3-dipolar cycloaddition. Tetahedron Lett 59:3643

    Article  CAS  Google Scholar 

  4. Heravi MM, Zadsirjan V, Dehghani M, Ahmadi T (2018) Towards click chemistry: multicomponent reactions via combinations of name reactions. Tetrahedron 74:3391

    Article  CAS  Google Scholar 

  5. Buckle DR, Outred DJ, Rockell CJM, Smith H, Spicer BA (1983) Studies on v-triazoles. 7. Antiallergic 9-oxo-1H,9H-benzopyrano[2,3-d]-v-triazoles. J Med Chem 26:251

    CAS  PubMed  Google Scholar 

  6. Kelley JL, Koble CS, Davis RG, McLean EW, Soroko FE, Cooper BR (1995) 1-(Fluorobenzyl)-4-amino-1H-1,2,3-triazolo[4,5-c]pyridines: synthesis and anticonvulsant activity. J Med Chem 38:4131

    Article  CAS  PubMed  Google Scholar 

  7. Micetich RG, Maiti SN, Spevak P, Hall TW, Yamabe S, Ishida N, Tanaka M, Yamazaki T, Nakai A, Ogawa K (1987) Synthesis and .beta.-lactamase inhibitory properties of 2.beta.-[(1,2,3-triazol-1-yl)methyl]-2.alpha.-methylpenam-3.alpha.-carboxylic acid 1,1-dioxide and related triazolyl derivatives. J Med Chem 30:1469

    Article  CAS  PubMed  Google Scholar 

  8. Saravanana V, Ganesan S, Rajakumar P (2020) Synthesis and DSSC application of BODIPY decorated triazole bridged and benzene nucleus cored conjugated dendrimers. RSC Adv 10:18390

    Article  Google Scholar 

  9. Shiri P, Amani AM (2021) A brief overview of catalytic applications of dendrimers containing 1,4-disubstituted-1,2,3-triazoles. Monatsh Chem 152:367

    Article  CAS  Google Scholar 

  10. Le-Nhat-Thuya G, Nguyen Thib N, Pham-Thed H, Dang Thia TA, Nguyen TH, Nguyen Thia TH, Nguyen HS, Nguyen TV (2020) Synthesis and biological evaluation of novel quinazoline-triazole hybrid compounds with potential use in Alzheimer’s disease. Bioorg Med Chem Lett 30:127404

    Article  CAS  Google Scholar 

  11. Shiri P (2021) Novel hybrid molecules based on triazole-β-lactam as potential biological agents. Mini Rev Med Chem 21:536

    Article  CAS  PubMed  Google Scholar 

  12. Mashayekh K, Shiri P (2019) An overview of recent advances in the applications of click chemistry in the synthesis of bioconjugates with anticancer activities. Chem Select 4:13459

    CAS  Google Scholar 

  13. Sau SC, Hota PK, Mandal SK, Soleilhavoup M, Bertrand G (2020) Stable abnormal N-heterocyclic carbenes and their applications. Chem Soc Rev 49:1233

    Article  CAS  PubMed  Google Scholar 

  14. Flanigan DM, Romanov-Michailidis F, White NA, Rovis T (2015) Organocatalytic reactions enabled by N-heterocyclic carbenes. Chem Rev 15:9307

    Article  CAS  Google Scholar 

  15. Cao J, Yu M, Li H, Wang L, Zhu X, Wang G, Shi Y, Cao C (2015) Synthesis of cyclic di- and trithiocarbonates from epoxides and carbon disulfide catalyzed by N-heterocyclic carbine. Res Chem Intermed 41:5323

    Article  CAS  Google Scholar 

  16. Diaz-Velazquez H, Verpoor F (2012) N-heterocyclic carbene transition metal complexes for catalysis in aqueous media. Chem Soc Rev 41:7032

    Article  CAS  Google Scholar 

  17. Herrmann WA (2002) N-heterocyclic carbenes: a new concept in organometallic catalysis. Angew Chem Int Ed 41:1290

    Article  CAS  Google Scholar 

  18. Hopkinson MN, Richter C, Schedler M, Glorius F (2014) An overview of N-heterocyclic carbenes. Nature 510:485

    Article  CAS  PubMed  Google Scholar 

  19. Janssen-Muller D, Schlepphorst C, Glorius F (2017) Privileged chiral N-heterocyclic carbene ligands for asymmetric transition-metal catalysis. Chem Soc Rev 46:4845

    Article  PubMed  Google Scholar 

  20. Diez-Gonzalez S, Nolan SP (2017) Stereoelectronic parameters associated with N-heterocyclic carbene (NHC) ligands: a quest for understanding. Coord Chem Rev 251:874

    Article  CAS  Google Scholar 

  21. Huynh HV (2018) Electronic properties of N-heterocyclic carbenes and their experimental determination. Chem Rev 118:9457

    Article  CAS  PubMed  Google Scholar 

  22. Sommer WJ, Weck M (2007) Supported N-heterocyclic carbene complexes in catalysis. Coord Chem Rev 251:860

    Article  CAS  Google Scholar 

  23. Huang HJ, Lee WC, Yap GPA, Ong TG (2014) Synthesis and characterization of amino-NHC coinage metal complexes and application for C–H activation of caffeine. J Organomet Chem 761:64

    Article  CAS  Google Scholar 

  24. Dorta R, Stevens ED, Scott NM, Costabile C, Cavallo L, Hoff CD, Nolan PS (2005) Steric and electronic properties of N-heterocyclic carbenes (NHC): a detailed study on their interaction with Ni(CO)4. J Am Chem Soc 127:2485

    Article  CAS  PubMed  Google Scholar 

  25. Guisado-Barrios G, Bouffard J, Donnadieu B, Bertrand G (2010) Crystalline 1H–1,2,3-triazol-5-ylidenes: new stable mesoionic carbenes (MICs). Angew Chem Int Ed 49:4759

    Article  CAS  Google Scholar 

  26. Cazin CSJ (2009) Recent advances in the design and use of immobilised N-heterocyclic carbene ligands for transition-metal catalysis. Chim CR 12:1173

    Article  CAS  Google Scholar 

  27. Zhong R, Lindhorst AC, Groche FJ, Kuhn F (2017) Immobilization of N-heterocyclic carbene compounds: a synthetic perspective. Chem Rev 117:1970

    Article  CAS  PubMed  Google Scholar 

  28. Gajare S, Patil A, Hangirgekar S, Dhanmane S, Rashinkar G (2020) Green synthesis of quinolines via A3-coupling by using graphene oxide-supported Brønsted acidic ionic liquid. Res Chem Intermed 46:2417

    Article  CAS  Google Scholar 

  29. Jagadale M, Khanapure S, Salunkhe R, Rajmane M, Rashinkar G (2016) Sustainable synthesis of sulfonamides using supported ionic liquid phase catalyst containing Keggin-type anion. Appl Organomet Chem 30:25

    Article  CAS  Google Scholar 

  30. Hajipour AR, Tadayoni NS, Khorsandi Z (2016) Magnetic iron oxide nanoparticles–N-heterocyclic carbene–palladium(II): a new, efficient and robust recyclable catalyst for Mizoroki–Heck and Suzuki–Miyaura coupling reactions. Appl Organomet Chem 30:590

    Article  CAS  Google Scholar 

  31. NasirBaig RB, Varma RS (2013) Magnetically retrievable catalysts for organic synthesis. Chem Commun 49:752

    Article  Google Scholar 

  32. Sharma PK, Dutta S, Sharma S, Zboril R, Varma RS, Gawande MB (2016) Fe3O4 (iron oxide)-supported nanocatalysts: synthesis, characterization and applications in coupling reactions. Green Chem 18:3184

    Article  CAS  Google Scholar 

  33. Wang P, Kong AG, Wang WJ, Zhu HY, Shan YK (2010) Facile preparation of ionic liquid functionalized magnetic nano-solid acid catalysts for acetalization reaction. Catal Lett 135:159

    Article  CAS  Google Scholar 

  34. Yuan J, Xu Y, Muller AHE (2011) One-dimensional magnetic inorganic–organic hybrid nanomaterials. Chem Soc Rev 40:640

    Article  CAS  PubMed  Google Scholar 

  35. Gawande MB, Branco PS, Varma RS (2013) Nano-magnetite (Fe3O4) as a support for recyclable catalysts in the development of sustainable methodologies. Chem Soc Rev 42:3371

    Article  CAS  PubMed  Google Scholar 

  36. Kurane R, Jadhav J, Khanapure S, Salunkhe R, Rashinkar G (2013) Synergistic catalysis by an aerogel supported ionic liquid phase (ASILP) in the synthesis of 1,5-benzodiazepines. Green Chem 15:1849

    Article  CAS  Google Scholar 

  37. Khanapure S, Jagadale M, Salunkhe R, Rashinkar G (2016) Zirconocene dichloride catalyzed multi-component synthesis of 1-amidoalkyl-2-naphthols at ambient temperature. Res Chem Intermed 42:2075

    Article  CAS  Google Scholar 

  38. Patil SS, Pawar PB, Jadhav SD, Deshmukh MB (2013) An efficient one-pot multicomponent synthesis of dihydropyridines by using succinic acid as mild organocatalyst. Asian J Chem 25:9442

    Article  CAS  Google Scholar 

  39. Patil SS, Jadhav SD, Deshmukh MB (2011) Natural acid catalyzed multi-component reactions as a green approach. Arch Appl Sci Res 3:203

    CAS  Google Scholar 

  40. Patil A, Mane A, Kamat S, Lohar T, Salunkhe R (2019) Aqueous hydrotropic solution: green reaction medium for synthesis of pyridopyrimidinecarbonitrile and spiro-oxindoledihydroquinazolinone derivatives. Res Chem Intermed 45:3441

    Article  CAS  Google Scholar 

  41. Zhao X, Shi Y, Wang T, Cai Y, Jiang G (2008) Preparation of silica-magnetite nanoparticle mixed hemimicelle sorbents for extraction of several typical phenolic compounds from environmental water samples. J Chomatogr A 1188:140

    Article  CAS  Google Scholar 

  42. Liu Q, Xu Z, Finch JA, Egerton R (1998) A novel two-step silica-coating process for engineering magnetic nanocomposites. Chem Mater 10:3936

    Article  CAS  Google Scholar 

  43. Kooti M, Afshari M (2012) Phosphotungstic acid supported on magnetic nanoparticles as an efficient reusable catalyst for epoxidation of alkenes. Mater Res Bull 47:3473

    Article  CAS  Google Scholar 

  44. Zolfigol MA, Ayazi-Nasrabadi R (2016) Synthesis of the first magnetic nanoparticles with a thiourea dioxide-based sulfonic acid tag: application in the one-pot synthesis of 1,1,3-tri(1H-indol-3-yl) alkanes under mild and green conditions. RSC Adv 6:69595

    Article  CAS  Google Scholar 

  45. Salamatmanesh A, Miraki MK, Yazdani E, Heydari A (2018) Copper(I)–caffeine complex immobilized on silica-coated magnetite nanoparticles: a recyclable and eco-friendly catalyst for click chemistry from organic halides and epoxides. Catal Lett 148:3257

    Article  CAS  Google Scholar 

  46. Pellei M, Gandin V, Marzano C, Marinelli M, Bello FD, Santini C (2018) The first water-soluble copper(I) complexes bearing sulfonated imidazole- and benzimidazole-derived N-heterocyclic carbenes: synthesis and anticancer studies. Appl Organomet Chem 32:4185

    Article  CAS  Google Scholar 

  47. Miraki MK, Arefi M, Salamatmanesh A, Yazdani E, Heydari A (2018) Magnetic nanoparticle-supported Cu–NHC complex as an efficient and recoverable catalyst for nitrile hydration. Catal Lett 148:3378

    Article  CAS  Google Scholar 

  48. Ying A, Hou H, Liu S, Chen G, Yang J, Xu S (2016) Ionic modified TBD supported on magnetic nanoparticles: a highly efficient and recoverable catalyst for organic transformations. Sustain ASC Chem Eng 4:625

    Article  CAS  Google Scholar 

  49. Ghosh S, Badruddoza AZM, Uddin MS, Hidajat K (2011) Adsorption of chiral aromatic amino acids onto carboxymethyl-β-cyclodextrin bonded Fe3O4/SiO2 core–shell nanoparticles. Colloid J Interface Sci 354:483

    Article  CAS  Google Scholar 

  50. Kim J, Stahl S (2015) Cu-catalyzed aerobic oxidative three-component coupling route to N-sulfonyl amidines via an ynamine intermediate. J Org Chem 80:2448

    Article  CAS  PubMed  Google Scholar 

  51. Jagadale M, Bhange P, Salunkhe R, Bhange D, Rajmane M, Rashinkar G (2016) One-pot multicomponent synthesis of N-sulfonyl amidines using magnetic separable nanoparticles-decorated N-heterocyclic carbene complex with copper. Appl Catal A 211:95

    Article  CAS  Google Scholar 

  52. Kim SH, Park SH, Choi JH, Chang S (2011) Sulfonyl and phosphorylazides: going further beyond the click realm of alkyl and aryl azides. Chem Asian J 6:2618

    Article  CAS  PubMed  Google Scholar 

  53. Bae I, Han H, Chang S (2005) Highly efficient one-pot synthesis of N-sulfonylamidines by Cu-catalyzed three-component coupling of sulfonyl azide, alkyne, and amine. J Am Chem Soc 27:2038

    Article  CAS  Google Scholar 

  54. Yang T, Cui H, Zhang C, Zhang L, Su CY (2013) Porous metal-organic framework catalyzing the three-component coupling of sulfonyl azide, alkyne, and amine. Inorg Chem 52:9053

    Article  CAS  PubMed  Google Scholar 

  55. Hwang SJ, Cho SH, Chang SB (2008) Evaluation of catalytic activity of copper salts and their removal processes in the three-component coupling reactions. Pure Appl Chem 80:873

    Article  CAS  Google Scholar 

  56. Tasca E, Sorella GL, Sperni L, Strukul G, Scarso A (2015) Micellar promoted multi-component synthesis of 1,2,3-triazoles in water at room temperature. Green Chem 17:1414

    Article  CAS  Google Scholar 

  57. Xiong X, Chen H, Tang Z, Jiang Y (2014) Supported CuBr on graphene oxide/Fe3O4: a highly efficient, magnetically separable catalyst for the multi-gram scale synthesis of 1,2,3-triazoles. RSC Adv 4:9830

    Article  CAS  Google Scholar 

  58. Jain Y, Kumari M, Singh RP, Kumar D, Gupta R (2019) Sonochemical decoration of graphene oxide with magnetic Fe3O4@CuO nanocomposite for efcient click synthesis of coumarin-sugar based bioconjugates and their cytotoxic activity. Catal Lett 150:1142

    Article  CAS  Google Scholar 

  59. Pourhassan F, Eshghi H (2020) Novel hybrid thioamide ligand supported copper nanoparticles on SBA-15: a copper rich robust nanoreactor for green synthesis of triazoles and tetrazoles in water medium. Catal Lett 150:1287

    Article  CAS  Google Scholar 

  60. Pazoki F, Salamatmanesh A, Bagheri S, Heydari A (2020) Synthesis and characterization of copper(i)-cysteine complex supported on magnetic layered double hydroxide as an efcient and recyclable catalyst system for click chemistry using choline azide as reagent and reaction medium. Catal Lett 150:1186

    Article  CAS  Google Scholar 

  61. Sharghi H, Shiri P, Aberi M (2017) Five-membered N-heterocycles synthesis catalyzed by nanosilica supported copper(II)–2-imino-1,2-diphenylethan-1-ol complex. Catal Lett 147:2844

    Article  CAS  Google Scholar 

  62. Shiri P, Aboonajmi J (2020) A systematic review on silica- carbon and magnetic materials-supported copper species as efficient heterogeneous nanocatalysts in “click” reactions n. J Org Chem 16:551

    CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Indian Institute of Bombay (IITB), North-Eastern Hill University Shillong (NEHU), Indian Institute of Technology, Madras (IITM) for providing spectral facilities and Central Facility Centre (CFC) Shivaji University Kolhapur for providing quantitative spectral analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh Patil.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2021 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pawar, A., Gajare, S., Jagdale, A. et al. Supported NHC-Benzimi@Cu Complex as a Magnetically Separable and Reusable Catalyst for the Multicomponent and Click Synthesis of 1,4-Disubstituted 1,2,3-Triazoles via Huisgen 1,3-Dipolar Cycloaddition. Catal Lett 152, 1854–1868 (2022). https://doi.org/10.1007/s10562-021-03772-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03772-9

Keywords

Navigation