Skip to main content
Log in

Nanoscale Zero-Valent Iron Supported on Carbon Nitride as a Peroxymonosulfate Activator for the Efficient Degradation of Paraxylene

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Nanoscale zero-valent iron (nZVI) supported on polymeric graphitic carbon nitride (CN) composite (nZVI@CN) was synthesized via liquid phase reduction method as peroxymonosulfate (PMS) activator, and had been achieved efficient degradation of paraxylene (PX) in this study. The physicochemical properties of nZVI@CN were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared spectrometer, Scanning electron microscopy and Brunauer–Emmett–Teller. The results indicated that catalyst prepared with 1:1 of nZVI and CN mass ration showed the best catalytic performance for the PX degradation. The removal efficiency of PX was 90.9% within 30 min treatment with the optimal reaction conditions (1 mM PMS, 0.1 g/L nZVI@CN, 20 mg/L PX and pH 6.86), and the mineralization rate measured by the removal of total organic carbon had reached 82.6%. Radical quenching and Electron paramagnetic resonance detection confirmed that sulfate and hydroxyl radicals generated by PMS activation were responsible for the degradation of PX, and sulfate radicals were the dominant active species. In addition, the possible reaction mechanism was proposed based on the experimental results. The nZVI@CN can not only be suitable for wide pH range (3–9) to effectively remove PX, but also has good stability and reusability. The removal efficiency of PX was higher than 60% in the fifth reuse experiment, which indicated that nZVI@CN was a stable PMS activator for efficiently PX removal in water.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Aranda E, Marco-Urrea E, Caminal G, Arias ME, Garcia-Romera I, Guillen F (2010) J Hazard Mater 181:181

    Article  CAS  PubMed  Google Scholar 

  2. Chen BL, Zhou DD, Zhu LZ (2008) Environ Sci Technol 42:5137

    Article  CAS  PubMed  Google Scholar 

  3. Korologos CA, Nikolaki MD, Zerva CN, Philippopoulos CJ, Poulopoulos SG (2012) J Photochem Photobiol A 244:24

    Article  CAS  Google Scholar 

  4. Yousefian F, Hassanvand MS, Nodehi RN, Amini H, Rastkari N, Aghaei M, Yunesian M, Yaghmaeian K (2020) Environ Res 191:110068

    Article  CAS  PubMed  Google Scholar 

  5. Gu XG, Wang YD, Miao ZW, Lu SG, Qiu ZF, Sui Q, Guo XH (2017) Res Chem Intermed 43:1

    Article  CAS  Google Scholar 

  6. Deng J, Xu MY, Qiu CG, Chen Y, Ma XY, Gao NY, Li XY (2018) Appl Surf Sci 459:138

    Article  CAS  Google Scholar 

  7. Liu XW, Zhang TQ, Zhou YC, Fang L, Shao Y (2013) Chemosphere 93:2717

    Article  CAS  PubMed  Google Scholar 

  8. Pang YX, Ruan Y, Feng Y, Diao ZH, Shih KM, Hou LA, Chen DY, Kong LJ (2019) Chemosphere 228:412

    Article  CAS  PubMed  Google Scholar 

  9. Wang JL, Wang SZ (2018) Chem Eng J 334:1502

    Article  CAS  Google Scholar 

  10. Gao JN, Jiang B, Ni CC, Qi YF, Zhang YQ, Oturan N, Oturan MA (2019) Appl Catal B 254:391

    Article  CAS  Google Scholar 

  11. Xu L, Yang L, Bai X, Du XY, Wang Y, Jin PK (2019) Chem Eng J 373:238

    Article  CAS  Google Scholar 

  12. Yang L, Xu L, Bai X, Jin PK (2019) J Hazard Mater 365:107

    Article  CAS  PubMed  Google Scholar 

  13. Yu JF, Tang L, Pang Y, Zeng GM, Wang JJ, Deng YC, Liu YN, Feng HP, Chen S, Ren XY (2019) Chem Eng J 364:146

    Article  CAS  Google Scholar 

  14. Wang J, Duan XG, Dong Q, Meng FP, Tan XY, Liu SM, Wang SB (2019) Carbon 144:781

    Article  CAS  Google Scholar 

  15. Ferrero GA, Diez N, Sevilla M, Fuertes AB (2019) Microporous Mesoporous Mater 278:280

    Article  CAS  Google Scholar 

  16. Liu GH, Li C, Stewart BA, Liu L, Zhang M, Yang MY, Lin KF (2020) Chem Eng J 399:125772

    Google Scholar 

  17. Wang XC, Blechert S, Antonietti M (2012) Acs Catal 2:1596

    Article  CAS  Google Scholar 

  18. Martin DJ, Reardon PJT, Moniz SJA, Tang JW (2014) J Am Chem Soc 136:12568

    Article  CAS  PubMed  Google Scholar 

  19. Wang GL, Chen S, Quan X, Yu HT, Zhang YB (2017) Carbon 115:730

    Article  CAS  Google Scholar 

  20. Tao YF, Ni Q, Wei MY, Xia DS, Li XX, Xu AH (2015) Rsc Adv 5:44128

    Article  CAS  Google Scholar 

  21. Wang D, Astruc D (2014) Chem Rev 114:6949

    Article  CAS  PubMed  Google Scholar 

  22. Dong F, Wu LW, Sun YJ, Fu M, Wu ZB, Lee SC (2011) J Mater Chem 21:15171

    Article  CAS  Google Scholar 

  23. Yan JC, Han L, Gao WG, Xue S, Chen MF (2015) Bioresour Technol 175:269

    Article  CAS  PubMed  Google Scholar 

  24. Li PJ, Lin KR, Fang ZQ, Wang KM (2017) J Clean Prod 151:21

    Article  CAS  Google Scholar 

  25. Gu LA, Wang JY, Zou ZJ, Han XJ (2014) J Hazard Mater 268:216

    Article  CAS  PubMed  Google Scholar 

  26. Li WQ, Molina-Fernandez C, Estager J, Monbaliu JCM, Debecker DP, Luis P (2020) J Membr Sci 598:117790

    Article  CAS  Google Scholar 

  27. Miranda C, Mansilla H, Yanez J, Obregon S, Colon G (2013) J Photochem Photobiol A 253:16

    Article  CAS  Google Scholar 

  28. Han Q, Wang B, Zhao Y, Hu C, Qu L (2015) Angew Chem Int Ed 54:11433

    Article  CAS  Google Scholar 

  29. Dong HR, Jiang Z, Deng JM, Zhang C, Cheng YJ, Hou KJ, Zhang LH, Tang L, Zeng GM (2018) Water Res 129:51

    Article  CAS  PubMed  Google Scholar 

  30. Sravanthi K, Ayodhya D, Swamy PY (2018). J Anal Sci Technol. https://doi.org/10.1186/s40543-017-0134-9

    Article  Google Scholar 

  31. Jin QQ, Zhang S, Wen T, Wang J, Gu PC, Zhao GX, Wang XX, Chen ZS, Hayat T, Wang XK (2018) Environ Pollut 243:218

    Article  CAS  PubMed  Google Scholar 

  32. Wu P, Wang JR, Zhao J, Guo LJ, Osterloh FE (2014) J Mater Chem A 2:20338

    Article  CAS  Google Scholar 

  33. Li HC, Shan C, Pan BC (2018) Environ Sci Technol 52:2197

    Article  CAS  PubMed  Google Scholar 

  34. Liu JH, Zhang TK, Wang ZC, Dawson G, Chen W (2011) J Mater Chem 21:14398

    Article  CAS  Google Scholar 

  35. Wang LZ, Gan KF, Lu DL, Zhang JL (2016). Eur J Inorg Chem. https://doi.org/10.1002/ejic.201501215

    Article  Google Scholar 

  36. Anipsitakis GP, Dionysiou DD, Gonzalez MA (2006) Environ Sci Technol 40:1000

    Article  CAS  PubMed  Google Scholar 

  37. Qiu PX, Xu CM, Chen H, Jiang F, Wang X, Lu RF, Zhang XR (2017) Appl Catal B 206:319

    Article  CAS  Google Scholar 

  38. Wu YW, Chen XT, Han Y, Yue DT, Cao XD, Zhao YX, Qian XF (2019) Environ Sci Technol 53:9081

    Article  CAS  PubMed  Google Scholar 

  39. Xu LJ, Wang JL (2013) Appl Catal B 142:396

    Article  CAS  Google Scholar 

  40. Yao YJ, Cai YM, Lu F, Wei FY, Wang XY, Wang SB (2014) J Hazard Mater 270:61

    Article  CAS  PubMed  Google Scholar 

  41. Oh WD, Chang VWC, Hu ZT, Goei R, Lim TT (2017) Chem Eng J 323:260

    Article  CAS  Google Scholar 

  42. Ghanbari F, Moradi M (2017) Chem Eng J 310:41

    Article  CAS  Google Scholar 

  43. Li H, Shan C, Pan B (2019) Sci Total Environ 675:62

    Article  CAS  PubMed  Google Scholar 

  44. Yang L, Chen Y, Ouyang D, Yan JC, Qian LB, Han L, Chen MF, Li J, Gu MY (2020). Chem Eng J. https://doi.org/10.1016/j.cej.2020.125811

    Article  PubMed  PubMed Central  Google Scholar 

  45. Du YF, Dai M, Cao JF, Peng CS, Ali I, Naz I, Li JY (2020). Chemosphere. https://doi.org/10.1016/j.chemosphere.2019.125522

    Article  PubMed  Google Scholar 

  46. Xie M, Tang JC, Kong LS, Lu WH, Natarajan V, Zhu F, Zhan JH (2019) Chem Eng J 360:1213

    Article  CAS  Google Scholar 

  47. Chen X, Oh WD, Hu ZT, Sun YM, Webster RD, Li SZ, Lim TT (2018) Appl Catal B 225:243

    Article  CAS  Google Scholar 

  48. Nguyen TB, Doong RA, Huang CP, Chen CW, Dong CD (2019) Sci Total Environ 675:531

    Article  CAS  PubMed  Google Scholar 

  49. Liang CJ, Su HW (2009) Ind Eng Chem Res 48:5558

    Article  CAS  Google Scholar 

  50. Duan PJ, Ma TF, Yue Y, Li YW, Zhang X, Shang YA, Gao BY, Zhang QZ, Yue QY, Xu X (2019) Environ Sci-Nano 6:1799

    Article  CAS  Google Scholar 

  51. Li X, Wang ZH, Zhang B, Rykov AI, Ahmed MA, Wang JH (2016) Appl Catal B 181:788

    Article  CAS  Google Scholar 

  52. Lin KYA, Lai HK, Tong S (2018) J Colloid Interface Sci 514:272

    Article  CAS  PubMed  Google Scholar 

  53. Rodriguez S, Santos A, Romero A (2017) Chem Eng J 318:197

    Article  CAS  Google Scholar 

  54. Yao YJ, Chen H, Qin JC, Wu GD, Lian C, Zhang J, Wang SB (2016) Water Res 101:281

    Article  CAS  PubMed  Google Scholar 

  55. Li X, Liu X, Lin C, Zhou Z, He M, Ouyang W (2020) Chem Eng J 382:123013

    Article  CAS  Google Scholar 

  56. Jiang Q, Zhang Y, Jiang S, Wang Y, Li H, Han W, Qu J, Wang L, Hu Y (2021) Chem Eng J 403:126309

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Key Research and Development Program of China (2018YFC1800705) and the National Natural Science Foundation of China (41907110).

Author information

Authors and Affiliations

Authors

Contributions

HM: Methodology, Investigation, Formal analysis, Writing-Original draft. QW: Writing-review & editing. GL: Writing-review & editing. XZ: Investigation, Formal analysis. MZ: Conceptualization, Writing-review & editing. KH: Resources, Conceptualization. KL: Funding acquisition.

Corresponding authors

Correspondence to Meng Zhang or Kuangfei Lin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 854 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mei, H., Wang, Q., Liu, G. et al. Nanoscale Zero-Valent Iron Supported on Carbon Nitride as a Peroxymonosulfate Activator for the Efficient Degradation of Paraxylene. Catal Lett 151, 3532–3542 (2021). https://doi.org/10.1007/s10562-021-03596-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03596-7

Keywords

Navigation