Skip to main content
Log in

A Facile Route to Prepare PbZr Nanocomposite Catalysts for the Efficient Synthesis of Diphenyl Carbonate

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Diphenyl carbonate is a versatile chemical intermediate and key building block for the synthesis of polycarbonates. A facile route to prepare PbZr nanocomposites were developed using different precipitants to investigate the effect on the catalytic activity of the solid acid catalysts. The structure–performance relationship of the nanocomposites, dispersion of active components and structure stability, and the catalytic performance were thoroughly analyzed. The results showed that there existed the interaction between Zr and Pb, which induced the homogenous dispersion of Pb and high surface acid sites that could enhance the catalytic activities. Among the catalysts, PbZr–NH4OH represented the best catalytic performance and superior stability, indicating that NH4OH was more favorable compared with sodium hydroxide, ammonium carbonate and urea. The research provides a valuable reference in a wide range application of nanocomposite preparation for the effective and clean production of various carbonates.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Figueiredo MC, Trieu V, Eiden S et al (2018) Spectroscopic investigation of the electrosynthesis of diphenyl carbonate from CO and phenol on gold electrodes. ACS Catal 8:3087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kanega R, Hayashi T, Yamanaka I (2013) Pd(NHC) electrocatalysis for phosgene-free synthesis of diphenyl carbonate. ACS Catal 3:389

    Article  CAS  Google Scholar 

  3. Wu CJ, Yang XJ, Tian QF et al (2019) Photo-deposition preparation of supported Pd catalysts for non-phosgene one-step synthesis of diphenyl carbonate. Catal Commun 119:106

    Article  CAS  Google Scholar 

  4. Zhang LF, He YC, Yang XJ et al (2015) Oxidative carbonylation of phenol to diphenyl carbonate by Pd/Mo–MnFe2O4 magnetic catalyst. Chem Eng J 278:129

    Article  CAS  Google Scholar 

  5. Gong JL, Ma XB, Wang SP (2007) Phosgene-free approaches to catalytic synthesis of diphenyl carbonate and its intermediates. Appl Catal A 316:1

    Article  CAS  Google Scholar 

  6. Huang SY, Yan B, Wang SP et al (2015) Recent advances in dialkyl carbonates synthesis and applications. Chem Soc Rev 44:3079

    Article  CAS  PubMed  Google Scholar 

  7. Fan GZ, Zhao HT, Duan ZX et al (2011) A novel method to synthesize diphenyl carbonate from carbon dioxide and phenol in the presence of methanol. Catal Sci Technol 1:1138

    Article  CAS  Google Scholar 

  8. Nishihara R (2010) The novel process for diphenyl carbonate and polycarbonate production. Catal Surv Asia 14:140

    Article  CAS  Google Scholar 

  9. Kim WB, Joshi UA, Lee JS (2004) Making polycarbonates without employing phosgene: an overview on catalytic chemistry of intermediate and precursor syntheses for polycarbonate. Ind Eng Chem Res 43:1897

    Article  CAS  Google Scholar 

  10. Fukuoka S, Kawamura M, Komiya K et al (2003) A novel non-phosgene polycarbonate production process using by-product CO2 as starting material. Green Chem 5:497

    Article  CAS  Google Scholar 

  11. Wang Q, Li CH, Guo M et al (2015) Transesterification of dimethyl carbonate with phenol to diphenyl carbonate over hexagonal Mg(OH)2 nanoflakes. Inorg Chem Front 2:47

    Article  CAS  Google Scholar 

  12. Liang YN, Su KM, Cao L et al (2019) Lithium doped TiO2 as catalysts for the transesterification of bisphenol-A with dimethyl carbonate. Mol Catal 465:16

    Article  CAS  Google Scholar 

  13. Lee HY, Chen CY, Chen JL et al (2019) Design and control of diphenyl carbonate reactive distillation process with thermally coupled and heat-integrated stages configuration. Comput Chem Eng 121:130

    Article  CAS  Google Scholar 

  14. Matsuda H, Ohashi Y, Kurihara K et al (2019) Solid–liquid equilibria for selected binary systems containing diphenyl carbonate. Fluid Phase Equilib 479:17

    Article  CAS  Google Scholar 

  15. Wang SL, Zhang YZ, Chen Y et al (2014) Organotin compounds as catalysts for disproportionation of methyl phenyl carbonate to diphenyl carbonate. Chem J Chin U 35:2177

    CAS  Google Scholar 

  16. Wang S, Chen T, Wang G et al (2017) Influence of coordination groups on the catalytic performances of organo-titanium compounds for disproportionation of methyl phenyl carbonate to synthesize diphenyl carbonate. Appl Catal A 540:1

    Article  CAS  Google Scholar 

  17. Wang S, Li C, Xiao Z et al (2016) Highly efficient and stable PbO–ZrO2 catalyst for the disproportionation of methyl phenyl carbonate to synthesize diphenyl carbonate. J Mol Catal A Chem 420:26

    Article  CAS  Google Scholar 

  18. Wang S, Zhang Y, Chen T et al (2015) Preparation and catalytic property of MoO3/SiO2 for disproportionation of methyl phenyl carbonate to diphenyl carbonate. J Mol Catal A 398:248

    Article  CAS  Google Scholar 

  19. Li P, Chen H, Schott JA et al (2019) Porous liquid zeolites: hydrogen bonding-stabilized H-ZSM-5 in branched ionic liquids. Nanoscale 11:1515

    Article  CAS  PubMed  Google Scholar 

  20. Du J, Shi X, Shan Y et al (2020) The effect of crystallite size on low-temperature hydrothermal stability of Cu-SAPO-34. Catal Sci Technol 10:2855

    Article  CAS  Google Scholar 

  21. Lian Z, Liu F, He H (2015) Effect of preparation methods on the activity of VOx/CeO2 catalysts for the selective catalytic reduction of NOx with NH3. Catal Sci Technol 5:389

    Article  CAS  Google Scholar 

  22. Lian Z, Xin S, Zhu N et al (2020) Effect of treatment atmosphere on the vanadium species of V/TiO2 catalysts for the selective catalytic reduction of NOx with NH3. Catal Sci Technol 10:311

    Article  CAS  Google Scholar 

  23. Zhao D, Zhang G, Yan L et al (2020) Carbon nanotube-supported Cu-based catalysts for oxidative carbonylation of methanol to methyl carbonate: effect of nanotube pore size. Catal Sci Technol 10:2615

    Article  CAS  Google Scholar 

  24. Yang H, Xiao Z, Qu Y et al (2017) The role of RGO in TiO2-RGO composites for the transesterification of dimethyl carbonate with phenol to diphenyl carbonate. Res Chem Intermed 44:799

    Article  CAS  Google Scholar 

  25. Xiao Z, Yang H, Zhang H et al (2018) Transesterification of dimethyl carbonate and phenol to diphenyl carbonate with the bismuth compounds. Chem Pap 72:2347

    Article  CAS  Google Scholar 

  26. Yin X, Zeng Y, Yao J et al (2019) Intrinsic reaction kinetics and mechanism for the reverse disproportionation reaction to methyl phenyl carbonate. Chem Eng Sci 199:478

    Article  CAS  Google Scholar 

  27. Valente JS, Valle-Orta M, Armendáriz-Herrera H et al (2018) Controlling the redox properties of nickel in NiO/ZrO2 catalysts synthesized by sol–gel. Catal Sci Technol 8:4070

    Article  CAS  Google Scholar 

  28. Liu Y, Tursun M, Yu H et al (2019) Surface property and activity of Pt/Nb2O5–ZrO2 for selective catalytic reduction of NO by H2. Mol Catal 464:22

    Article  CAS  Google Scholar 

  29. Wang S, Huang Z, Luo Y et al (2020) Direct conversion of syngas into light aromatics over Cu-promoted ZSM-5 with ceria-zirconia solid solution. Catal Sci Technol 10:6562

    Article  CAS  Google Scholar 

  30. Khalili S, Chenari HM (2020) Successful electrospinning fabrication of ZrO2 nanofibers: a detailed physical-chemical characterization study. J Alloys Compd 828:154414

    Article  CAS  Google Scholar 

  31. Wang S, Niu H, Wang J et al (2019) Highly effective transformation of methyl phenyl carbonate to diphenyl carbonate with recyclable Pb nanocatalyst. RSC Adv 9:20415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang Z, Zhang L, Hülsey MJ et al (2019) Zirconia phase effect in Pd/ZrO2 catalyzed CO2 hydrogenation into formate. Mol Catal 475:110461

    Article  CAS  Google Scholar 

  33. An HL, Zhao XQ, Guo L et al (2012) Synthesis of diethyl carbonate from ethyl carbamate and ethanol over ZnO–PbO catalyst. Appl Catal A 433:229

    Article  CAS  Google Scholar 

  34. Zhou WQ, Zhao XQ, Wang YJ et al (2004) Synthesis of diphenyl carbonate by transesterification over lead and zinc double oxide catalyst. Appl Catal A 260:19

    Article  CAS  Google Scholar 

  35. Han S, Otroshchenko T, Zhao D et al (2020) The effect of ZrO2 crystallinity in CrZrOx/SiO2 on non-oxidative propane dehydrogenation. Appl Catal A 590:117350

    Article  CAS  Google Scholar 

  36. Sánchez Faba EM, Ferrero GO, Dias JM et al (2020) Na–Ce-modified-SBA-15 as an effective and reusable bimetallic mesoporous catalyst for the sustainable production of biodiesel. Appl Catal A 604:117769

    Article  CAS  Google Scholar 

  37. Yan D, Xin J, Zhao Q et al (2018) Fe–Zr–O catalyzed base-free aerobic oxidation of 5-HMF to 2,5-FDCA as a bio-based polyester monomer. Catal Sci Technol 8:164

    Article  CAS  Google Scholar 

  38. Kondratowicz T, Drozdek M, Rokicińska A et al (2019) Novel CuO-containing catalysts based on ZrO2 hollow spheres for total oxidation of toluene. Microporous Mesoporous Mater 279:446

    Article  CAS  Google Scholar 

  39. Liao WM, Zhao PP, Cen BH et al (2020) Co–Cr–O mixed oxides for low-temperature total oxidation of propane: structural effects, kinetics, and spectroscopic investigation. Chin J Catal 41:442

    Article  CAS  Google Scholar 

  40. Yang B, Deng W, Guo L et al (2020) Copper-ceria solid solution with improved catalytic activity for hydrogenation of CO2 to CH3OH. Chin J Catal 41:1348

    Article  CAS  Google Scholar 

  41. Raveendra G, Li C, Liu B et al (2018) Synthesis of lower olefins from syngas over Zn/Al2O3-SAPO-34 hybrid catalysts: role of doped Zr and influence of the Zn/Al2O3 ratio. Catal Sci Technol 8:3527

    Article  CAS  Google Scholar 

  42. Quesada J, Faba L, Díaz E et al (2018) Enhancement of the 1-butanol productivity in the ethanol condensation catalyzed by noble metal nanoparticles supported on Mg–Al mixed oxide. Appl Catal A 563:64

    Article  CAS  Google Scholar 

  43. Wu Y, Xiao Y, Yuan H et al (2021) Imidazolium ionic liquid functionalized UiO-66-NH2 as highly efficient catalysts for chemical fixation of CO2 into cyclic carbonates. Microporous Mesoporous Mater 310:110578

    Article  CAS  Google Scholar 

  44. Jiang Y, Gao W, Bao C et al (2020) Comparative study of Ce–Nb–Ti oxide catalysts prepared by different methods for selective catalytic reduction of NO with NH3. Mol Catal 496:111161

    Article  CAS  Google Scholar 

  45. Wang X, Song Y, Huang L et al (2019) Tin modified Nb2O5 as an efficient solid acid catalyst for the catalytic conversion of triose sugars to lactic acid. Catal Sci Technol 9:1669

    Article  CAS  Google Scholar 

  46. Yu Y, Li F, Zang Z et al (2020) Highly efficient selective oxidation of 2-methylnaphthalene to vitamin K3 over mesoporous Al/Ti-SBA-15 catalysts: the effect of acid sites and textural property. Mol Catal 495:111158

    Article  CAS  Google Scholar 

  47. Park S, Kwon D, Kang JY et al (2019) Influence of the preparation method on the catalytic activity of Mg–Al hydrotalcites as solid base catalysts. Green Energy Environ 4:287

    Article  Google Scholar 

  48. Qu Y, Gao Y, Lin S et al (2020) Efficient synthesis of 3-methylindole using biomass-derived glycerol and aniline over ZnO and CeO2 modified Ag/SBA-15 catalysts. Mol Catal 493:111038

    Article  CAS  Google Scholar 

  49. Braunstein P, Lakkis M, Matt D et al (1987) Synthesis of anisole by Lewis acid catalysed decarboxylation of methyl phenyl carbonate. J Mol Catal 42:353

    Article  CAS  Google Scholar 

  50. Shaikh AAG, Sivaram S (1996) Organic carbonates. Chem Rev 96:951

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by National Natural Science Foundation of China (No. 21808048), Project funded by China Postdoctoral Science Foundation (No. 2018M632782), Project funded by Postdoctoral Research Grant in Henan Province (No. 001802030) and Key Project of Science and Technology Program of Henan Province (Nos. 182102210050 and 212102310317).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongying Niu or Tong Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOC 958 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Jiang, N., Liang, L. et al. A Facile Route to Prepare PbZr Nanocomposite Catalysts for the Efficient Synthesis of Diphenyl Carbonate. Catal Lett 151, 3250–3260 (2021). https://doi.org/10.1007/s10562-021-03563-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03563-2

Keywords

Navigation