Skip to main content

Advertisement

Log in

NiMgAlCe Catalysts Applied to Reforming of a Model Biogas for Syngas Production

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Hydrotalcite mixed oxide catalysts promoted with CeO2 containing nickel as the active phase were employed in the reforming of a free of contaminants model biogas. Catalysts were characterized using techniques such XRD, H2-TPR, CO2-TPD, Raman spectroscopy and TEM analyses. They showed a good performance along the 6 h of testing. Despite the drastic conditions for catalysts evaluation (low temperature and excess of CH4) that facilitate carbon deposition, the Ni 10 wt% catalyst showed a deposition rate similar to catalyst evaluated in softer conditions already reported in literature. The Ni 5 wt% spent catalyst showed the lowest carbon deposition rate among the three catalysts tested. Together with carbon filaments, the Ni 15 wt% catalyst featured the presence of encapsulating and coating carbon and they both would lead to deactivation, as attested by its oscillating activity behavior.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Alvés HJ, Bley Junior C, Niklevicz RR, Frigo EP, Frigo MS, Coimbra-Araújo CH (2013) Int J Hydorgen Energy 38(13):5215–5225

    Article  Google Scholar 

  2. Rafiq MH, Jakobsen HA, Schmid R, Hustad JE (2011) Fuel Process Technol 92(5):893–907

    Article  CAS  Google Scholar 

  3. Wang SG, Liao XG, Hu J, Cao DB, Li WY, Wang J, Jiao H (2007) Surf Sci 601(5):1271–1284

    Article  CAS  Google Scholar 

  4. Bradford MCJ, Vannice MA (1999) Reviews 41(1):1–42

    CAS  Google Scholar 

  5. González AR, Asencios YJO, Assaf EM, Assaf JM (2013) Appl Surf Sci 280:876–887

    Article  Google Scholar 

  6. Lucrédio AF, Assaf JM, Assaf EM (2014) Biomass Bioenerg 60:8–17

    Article  Google Scholar 

  7. Daza CE, Moreno S, Molina R (2011) Int J Hydrogen Energy 36(6):3886–3894

  8. Serrano-Lotina A, Daza L (2013) J Power Sources 238:81–86

    Article  CAS  Google Scholar 

  9. Reichle WT, Kang SY, Everhardt DS (1986) J Catal 101:352–359

    Article  CAS  Google Scholar 

  10. Cavani F, Trifirò F, Vaccari A (1991) Catal Today 11:173–301

    Article  CAS  Google Scholar 

  11. Tsyganok AI, Suzuki K, Hamakawa S, Takehira K, Hayakawa T (2001) Catal Lett 77(1–3):pp 75–86

    Article  CAS  Google Scholar 

  12. Pakhare D, Spivey J (2014) Chem Soc Rev 43(22):7813–7837

    Article  CAS  Google Scholar 

  13. Lino AVP, Assaf EM, Assaf EM (2017) Catal Today 289:78–88

    Article  CAS  Google Scholar 

  14. Dai F, Meng M, Zha Y, Li Z, Hu T, Xie Y, Zhang J (2012) Fuel Process Technol 104:43–49

    Article  CAS  Google Scholar 

  15. Li Q, Wang X, Chang W, Chen H, Zhang Z (2014) J Rare Earth 32(2):176

  16. Shishido T, Sukenokubu M, Morioka H, Furukawa R, Shirahase H, Takehira K (2001) Catal Lett 73(1):21–26

    Article  CAS  Google Scholar 

  17. Daza CE, Gallego J, Moreno JA, Mondragón F, Moreno S, Molina R (2008) Catal Today 133–135:357–366

    Article  Google Scholar 

  18. Takehira K, Shishido T, Wang P, Kosaka T, Takaki K (2004) J Catal 221:43–54

    Article  CAS  Google Scholar 

  19. Daza CE, Kiennemann A, Moreno S, Molina R (2009) Appl Catal A 364(1–2):65–74

    Article  CAS  Google Scholar 

  20. Lucrédio AF, Jerkiewickz G, Assaf EM (2007) Appl Catal A 333(1):90–95

    Article  Google Scholar 

  21. Bîrjega R, Pavel OD, Costentin G, Che M, Angelescu E (2005)) Appl Catal A 288(1–2):185–193

    Article  Google Scholar 

  22. Serrano-Lotina A, Martin AJ, Folgado MA, Daza L (2012) Int J Hydrogen Energy 37(17):12342–12350

    Article  CAS  Google Scholar 

  23. Zhao Y, Li F, Zhang R, Evans DG, Duan X (2002) Chem Mater 14:4286–4291

    Article  CAS  Google Scholar 

  24. Cantrell DG, Gillie LJ, Lee AF, Wilson K (2005) Appl Catal A 287(2):183–190

    Article  CAS  Google Scholar 

  25. Djaidja A, Libs S, Kiennemann A, Barama A (2006) Catal Today 113(3–4):194–200

    Article  CAS  Google Scholar 

  26. Scirè S, Riccobene PM, Crisafulli C (2010) Appl Catal B 101(1–2):109–117

    Article  Google Scholar 

  27. Dancini-Pontes I, de Souza M, Silva FA, Scaliante MHNO., Alonso CG, Bianchi GS, Medina Neto A, Pereira GM, Fernandes-Machado NRC (2015) Chem Eng J 273:66–74

    Article  CAS  Google Scholar 

  28. Bartholomew CH, Pannel RB, Butler JL (1980) J Catal 65(2):335–347

    Article  CAS  Google Scholar 

  29. Ha QLM, Armbruster U, Atia H, Scheneider M, Lund H, Agostini G, Radnik J, Vuong HT, Martin H (2017) Catalysts 7:157

    Article  Google Scholar 

  30. Olsbye U, Akporiaye D, Rytter E, Rönnekleiv M, Tangstad E (2002) Appl Catal A 224(1–2):39–49

    Article  CAS  Google Scholar 

  31. Pavel OD, Zavaoianu R, Bîrjega R, Angelescu E (2011) Catal Commun 12(10):845–850

    Article  CAS  Google Scholar 

  32. Debek R, Radlik M, Motak M, Galvez ME, Turek W, da Costa P, Grzybek T (2015) Catal Today 257:59–65

    Article  CAS  Google Scholar 

  33. Yu X, Wang N, Chu W, Liu M (2012) Chem Eng J 209:623–632

    Article  CAS  Google Scholar 

  34. Wang YB, Jenhg JM (2011) Chem Eng J 175:548–554

    Article  CAS  Google Scholar 

  35. Montañez M, Molina R, Moreno S (2014) Int J Hydrogen Energy 39(16):8225–8237

    Article  Google Scholar 

  36. Daza CE, Gallego M, Mondragón F, Moreno S, Molina R (2010) Fuel 89(3):592–603

    Article  CAS  Google Scholar 

  37. Debek R, Motak M, Galvez ME, Turek W, da Costa P, Grzybek T (2017) Int J Hydrogen Energy 14(37):23556–23567

    Article  Google Scholar 

  38. Özdemir H, Öksüzömer MAF, Gürkaynak MA (2014) Fuel 116:63–70

    Article  Google Scholar 

  39. Bradford MCJ, Vannice MA (1999) Catal Rev 41(1):1–42

    Article  CAS  Google Scholar 

  40. Gac W, Denis A, Borowiecki T, Kepinski L (2009) Appl Catal A 357:236–243

    Article  CAS  Google Scholar 

  41. Serrano-Lotina A, Daza L (2013) Appl Catal A 474(22):107–113

    Google Scholar 

  42. Nolan PE, Lynch DC, Cutler AH (1996) Carbon 34:817–819

    Article  CAS  Google Scholar 

  43. Faria EC, Neto RCR, Colman RC, Noronha FB (2014) Catal Today 228:138–144

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank ANP-PRH44/MCTI/FINEP and CAPES for the fellowship, and would like to acknowledge the sponsorship of FAPESP and Shell Brazil through the Research Centre for Gas Innovation (RCGI), São Paulo Research Foundation FAPESP Grant Proc. 2014/50279-4. The authors also thank Dr. Tiago Luis da Silva for his help with TEM analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ananda Vallezi Paladino Lino.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lino, A.V.P., Assaf, E.M. & Assaf, J.M. NiMgAlCe Catalysts Applied to Reforming of a Model Biogas for Syngas Production. Catal Lett 148, 979–991 (2018). https://doi.org/10.1007/s10562-018-2304-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-018-2304-9

Keywords

Navigation