Skip to main content
Log in

Facile Synthesis of Optically-Active γ-Valerolactone from Levulinic Acid and Its Esters Using a Heterogeneous Enantio-Selective Catalyst

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Optically-active γ-valerolactone was synthesized by the enantio-selective hydrogenations of levulinic acid and its esters. A tartaric acid-NaBr-modified nickel catalyst produced the optically-active γ-valerolactone with a 60% enantiomeric excess (ee), almost quantitative conversion and chemoselectivity. The synthesis of the optically-active γ-valerolactone using the enantio-selective heterogeneous catalyst would be promising for the large-scale industrial production from levulinic acid and its esters, which can be obtained by the acid-catalyzed dehydration of cellulosic fraction of biomass.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1

Similar content being viewed by others

References

  1. Horvath IT, Mehdi H, Fabos V, Boda L, Mika LT (2008) Green Chem 10:238

    Article  CAS  Google Scholar 

  2. Mehdi H, Fabos V, Tuba R, Bodor A, Mika LT, Horvath IT (2008) Top Catal 48:49

    Article  CAS  Google Scholar 

  3. Bond JQ, Alonso DM, Wang D, West RM, Dumesic JA (2010) Science 327:1110

    Article  CAS  Google Scholar 

  4. Raoufmoghaddam S, Rood MTM, Buijze FKW, Drent E, Bouwman E (2014) ChemSusChem 7:1984

    Article  CAS  Google Scholar 

  5. Gagliardi M, Di Michele F, Mazzolai B, Bifone A (2015) J Polym Res 22:1

    Article  CAS  Google Scholar 

  6. Chalid M, Heeres HJ, Broekhuis AA (2015) Polym-Plast Technol Eng 54:234

    Article  CAS  Google Scholar 

  7. He J, Wang Z, Zhao W, Yang T, Liu Y, Yang S (2017) Curr Catal 6:31

    Article  CAS  Google Scholar 

  8. Pongracz P, Kollar L, Mika LT (2016) Green Chem 18:842

    Article  CAS  Google Scholar 

  9. Marosvölgyi-Haskó D, Lengyel B, Tukacs JM, Kollár L, Mika LT (2016) ChemPlusChem 81:1224

    Article  Google Scholar 

  10. Rasina D, Kahler-Quesada A, Ziarelli S, Warratz S, Cao H, Santoro S, Ackermann L, Vaccaro L (2016) Green Chem 18:5025

    Article  CAS  Google Scholar 

  11. Tian X, Yang F, Rasina D, Bauer M, Warratz S, Ferlin F, Vaccaro L, Ackermann L (2016) Chem Commun 52:9777

    Article  CAS  Google Scholar 

  12. Pongrácz P, Bartal B, Kollár L, Mika LT (2017) J Organomet Chem 847:140

    Article  Google Scholar 

  13. Gorissen HJ, Van Hoeck J-P, Mockel AM, Journée GH, Delatour C, Libert VR (1992) Chirality 4:286

    Article  CAS  Google Scholar 

  14. Baldwin JE, Adlington RM, Ramcharitar SH (1992) Synlett 1992:875

    Article  Google Scholar 

  15. Stangeland EL, Sammakia T (2004) J Org Chem 69:2381

    Article  CAS  Google Scholar 

  16. Tukacs JM, Fridrich B, Dibo G, Szekely E, Mika LT (2015) Green Chem 17:5189

    Article  CAS  Google Scholar 

  17. Datrika R, Kallam SR, Gajare V, Khobare S, Rama VS, Kommi M, Hindupur RM, Vidavulur S, Tadikonda PV (2017) ChemistrySelect 2:5828

    Article  CAS  Google Scholar 

  18. Sheldon RA (2014) Green Chem 16:950

    Article  CAS  Google Scholar 

  19. Zhang Z (2016) ChemSusChem 9:156

    Article  CAS  Google Scholar 

  20. Deng L, Li J, Lai D-M, Fu Y, Guo Q-X (2009) Angew Chem 121:6651

    Article  Google Scholar 

  21. Deng J, Wang Y, Pan T, Xu Q, Guo Q-X, Fu Y (2013) ChemSusChem 6:1163

    Article  CAS  Google Scholar 

  22. Tukacs JM, Novak M, Dibo G, Mika LT (2014) Catal Sci Technol 4:2908

    Article  CAS  Google Scholar 

  23. Fábos V, Mika LT, Horváth IT (2014) Organometallics 33:181

    Article  Google Scholar 

  24. Wright WRH, Palkovits R (2012) ChemSusChem 5:1657

    Article  CAS  Google Scholar 

  25. Osatiashtiani A, Lee AF, Wilson K (2017) J Chem Technol Biotechnol 92:1125

    Article  CAS  Google Scholar 

  26. Ohkuma T, Kitamura M, Noyori R (1990) Tetrahedron Lett 31:5509

    Article  CAS  Google Scholar 

  27. Saito T, Yokozawa T, Ishizaki T, Moroi T, Sayo N, Miura T, Kumobayashi H (2001) Adv Synth Catal 343:264

    Article  CAS  Google Scholar 

  28. Juszkiewicz G (2002) Pol J Chem 76(12):1707

    CAS  Google Scholar 

  29. Starodubtseva EV, Turova OV, Vinogradov MG, Gorshkova LS, Ferapontov VA, Struchkova MI (2008) Tetrahedron 64:11713

    Article  CAS  Google Scholar 

  30. Izumi Y (1983) Adv Catal 32:215

    CAS  Google Scholar 

  31. Tai A, Sugimura T (2000) In: Vos DED, Vankelecom IFJ, Jacobs PA (eds) Chiral catalyst immobilization and recycling. Wiley-VCH, p 173

  32. Sugimura T (1999) Catal Surv Jpn 3:37

    Article  CAS  Google Scholar 

  33. Ding C, Wei W, Sun H, Ding J, Ren J, Qu X (2014) Carbon 79:615

    Article  CAS  Google Scholar 

  34. Osawa T, Harada T (1984) Bull Chem Soc Jpn 57:1518

    Article  CAS  Google Scholar 

  35. López-Martínez A, Keane MA (2000) J Mol Catal A 153:257

    Article  Google Scholar 

  36. Rives A, Leclercq E, Hubau R (1996) In: Malz RE (ed) Catalysis of organic reactions. Dekker Inc, New York, p. 241

    Google Scholar 

  37. Osawa T, Hayashi Y, Ozawa A, Harada T, Takayasu O (2001) J Mol Catal A 169:289

    Article  CAS  Google Scholar 

  38. Harada T, Yamamoto M, Onaka S, Imaida M, Ozaki H, Tai A, Izumi Y (1981) Bull Chem Soc Jpn 54:2323

    Article  CAS  Google Scholar 

  39. Osawa T, Ozawa A, Harada T, Takayasu O (2000) J Mol Catal A 154:271

    Article  CAS  Google Scholar 

  40. Margitfalvi JL, Marti P, Baiker A, Botz L, Sticher O (1990) Catal Lett 6:281

    Article  CAS  Google Scholar 

  41. Baiker A (1997) J Mol Catal A 115:473

    Article  CAS  Google Scholar 

  42. Harada T, Izumi Y (1978) Chem Lett 7:1195

    Article  Google Scholar 

  43. Bostelaar LJ, Sachtler WMH (1984) J Mol Catal 27:387

    Article  CAS  Google Scholar 

  44. Osawa T, Mieno E, Harada T, Takayasu O (2003) J Mol Catal A 200:315

    Article  CAS  Google Scholar 

  45. Murakami S, Harada T, Tai A (1980) Bull Chem Soc Jpn 53:1356

    Article  CAS  Google Scholar 

  46. Keane MA (1997) Langmuir 13:41

    Article  CAS  Google Scholar 

  47. Kukula P, Cerveny L (2002) J Mol Catal A 185:195

    Article  CAS  Google Scholar 

  48. Osawa T, Tanabe Y, Fujiwara M (2017) Catal Lett 147:686

    Article  CAS  Google Scholar 

  49. Kukula P, Cerveny L (2001) Appl Catal A 210:237

    Article  CAS  Google Scholar 

  50. Chen H, Li R, Wang H, Liu J, Wang F, Ma J (2007) J Mol Catal A 269:125

    Article  CAS  Google Scholar 

  51. Harada T, Tai A, Yamamoto M, Ozaki H, Izumi Y (1981) Stud Surf Sci Catal 7:364

    Article  CAS  Google Scholar 

  52. Osawa T, Ando M, Sakai S, Harada T, Takayasu O (2005) Catal Lett 105:41

    Article  CAS  Google Scholar 

  53. Blaser HU, Jalett HP, Wiehl J (1991) J Mol Catal 68:215

    Article  CAS  Google Scholar 

  54. Nakagawa S, Sugimura T, Tai A (1997) Chem Lett 26:859

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsutomu Osawa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osawa, T., Tanabe, Y. Facile Synthesis of Optically-Active γ-Valerolactone from Levulinic Acid and Its Esters Using a Heterogeneous Enantio-Selective Catalyst. Catal Lett 148, 824–830 (2018). https://doi.org/10.1007/s10562-017-2291-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-017-2291-2

Keywords

Navigation