Skip to main content

Advertisement

Log in

Syngas Production from Ethanol Dry Reforming over Cu/Ce0.8Zr0.2O2 Catalyst

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A Cu/Ce0.8Zr0.2O2 catalyst was synthesized by facile co-precipitation method and deeply studied for syngas production from carbon dioxide reforming of ethanol at various temperature and reactant ratios. The investigated catalyst showed promising activity and excellent stability along 90 h test, which was assigned to the strong synergistic metal-support interaction and high redox capacity as revealed by different characterization technique including X-ray diffraction (XRD), Raman, Oxygen storage capacity (OSC) and Temperature programmed reduction (H2-TPR) etc.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Sanz-Pérez ES, Murdock CR, Didas SA, Jones CW (2016) Chem Rev 116(19):11840

    Article  Google Scholar 

  2. Adans YF, Ballarini AD, Martins AR (2017) Catal Lett 147:1

    Article  Google Scholar 

  3. Bukhtiyarova M, Lunkenbein T, Kähler K (2017) Catal Lett 147:416

    Article  CAS  Google Scholar 

  4. Blamey J, Al-Jeboori MJ, Manovic V, Fennell PS, Anthony EJ (2016) Fuel Process Technol 132:100

    Article  Google Scholar 

  5. Chang C, Qin YS, Luo XL, Li YB (2017) Ind Crop Prod 99:34

    Article  CAS  Google Scholar 

  6. Suhartanto T, York AP, Hanif A (2001) Catal Lett 71:49

    Article  CAS  Google Scholar 

  7. Souza MMVM, Clavé L, Dubois V, Perez CAC, Schmal M (2004) Appl Catal A 272:133

    Article  CAS  Google Scholar 

  8. Santos BAV, Silva VMT, Loureiro JM, Rodrigues AE (2014) Chem Bio Eng Rev 1:214

    CAS  Google Scholar 

  9. Zhong LS, Yu F, An YL, Zhao YH, Sun YH, Li ZJ, Lin TJ, Lin YJ, Qi XZ, Gu L, Hu JS, Jin SF, Shen Q, Wang H (2016) Nature 538:84

    Article  CAS  Google Scholar 

  10. El Hassan N, Kaydouh MN, Geage H, El Zein H, Jabbour K, Casale S, El Zakhem H, Massiani P (2016) Appl Catal A 520:114

    Article  Google Scholar 

  11. Goicoechea S, Kraleva E, Enrich H (2017) Catal Lett 147:1403

    Article  CAS  Google Scholar 

  12. Franchini CA, Cesar DV (2010) Catal Lett 137:45

    Article  CAS  Google Scholar 

  13. Wu YJ, Díaz AF, Santos JC, Gracia F, Cunha AF, Rodrigues AE (2012) Chem Eng Technol 35:847

    Article  CAS  Google Scholar 

  14. Zabed H, Sahu JN, Suely A, Boyce AN, Faruq G (2017) Renew Sustain Energy Rev 71:475

    Article  CAS  Google Scholar 

  15. Moraes TS, Neto RCR, Ribeiro MC, Mattos LV, Kourtelesis M, Ladas S, Verykios X, Noronha FB (2016) Appl Catal B 181:754

    Article  CAS  Google Scholar 

  16. Cai WJ, Wang FG, Zhan ES, van Veen AC, Mirodatos C, Shen WJ (2008) J Catal 257:96

    Article  CAS  Google Scholar 

  17. Li D, Li XY, Gong JL (2016) Chem Rev 116:11529

    Article  CAS  Google Scholar 

  18. Kumar A, Bhosale RR, Malik SS, Abusrafa AE, Sale MAH, Ghosh UK, Al-Marri MJ, Almomani FA, Khader MM, Abu-Reesh IM (2016) Int J Hydrogen Energy 41:15149

    Article  CAS  Google Scholar 

  19. Ortiz AL, Samano RBP, Zaragoza MJM, Martinez VC (2015) Int J Hydrogen Energy 40:17172

    Article  Google Scholar 

  20. Bahari MB, Phuc NHH, Abdullah B, Alenazey F, Vo DVN (2016) J Environ Chem Eng 4:4830

    Article  CAS  Google Scholar 

  21. Wang WJ, Wang YQ (2009) Int J Hydrogen Energy 34:5382

    Article  CAS  Google Scholar 

  22. Bellido JDA, Tanabe EY, Assaf EM (2009) Appl Catal B 90:485

    Article  CAS  Google Scholar 

  23. Bahari MB, Goo BC, Pham TLM, Siang TJ, Danh HT, Ainirazali N, Vo DVN (2016) Proc Eng 148:654

    Article  CAS  Google Scholar 

  24. Zawadzki A, Bellido JDA, Lucrédio AF, Assaf EM (2014) Fuel Process Technol 128:432

    Article  CAS  Google Scholar 

  25. Lorenzut B, Montini T, Rogatis LD, Canton P, Benedetti A, Fornasiero P (2011) Appl Catal B 101:397

    Article  CAS  Google Scholar 

  26. Guarido CEM, Cesar DV, Souza MMVM, Schmal M (2009) Catal Today 142:252

    Article  CAS  Google Scholar 

  27. Zhang C, Yang HY, Gao P, Zhu H, Zhong LS, Wang H, Wei W, Sun YH (2017) J CO2 Util 17:263

    Article  CAS  Google Scholar 

  28. Deerattrakul V, Dittanet P, Sawangphruk M, Kongkachuichay P (2016) J CO2 Util 16:104

    Article  CAS  Google Scholar 

  29. Surisetty VR, Dalai AK, Kozinski J (2011) Appl Catal A 393:50

    Article  CAS  Google Scholar 

  30. Xiao J, Mao D, Guo X, Yu J (2015) Appl Surf Sci 338:146

    Article  CAS  Google Scholar 

  31. Hou TF, Yu B, Zhang SY, Zhang JH, Wang DZ, Xu TK, Cui L, Cai WJ (2015) Appl Catal B 168:524

    Article  Google Scholar 

  32. Jirátová K, Balabánová J, Kovanda F (2017) Catal Lett 147:1379

    Article  Google Scholar 

  33. Cullity BD (1978) Elements of X-Ray Diffraction, 2nd edn. Addison-Wesley, Menlo Park, CA

    Google Scholar 

  34. Pino L, Vita A, Cipiti F, Lagana M, Recupero V (2006) Appl Catal A 306:68

    Article  CAS  Google Scholar 

  35. Schmal M, Perez CA, da Silva VT, Padilha LF (2010) Appl Catal A 375:205

    Article  CAS  Google Scholar 

  36. Neto RCRN, Schmal M (2013) Appl Catal A 450:131

    Article  Google Scholar 

  37. Laguna OH, Pérez A, Centeno MA, Odriozola JA (2015) Appl Catal B 177:385

    Google Scholar 

  38. Fu GY, Mao DS, Sun SS, Yu J, Yang ZG (2015) J Ind Eng Chem 31:283

    Article  CAS  Google Scholar 

  39. Bera P, Priolkar KR, Sarode PR (2002) Chem Mater 14(8):3591

    Article  CAS  Google Scholar 

  40. Gnanakumar ES, Naik JM, Manikandan M, Raja T, Gopinath CS (2014) Chem Cat Chem 6:3116

    CAS  Google Scholar 

  41. Birot A, Epron F, Descorme C, Dupre D (2008) Appl Catal B 79:17

    Article  CAS  Google Scholar 

  42. Appel LG, Eon JG, Schmal M (1998) Catal Lett 56:199

    Article  CAS  Google Scholar 

  43. Suhonen S, Valden M, Hietikko M, Laitinen R, Savimäki A, Härkönen M (2001) Appl Catal A 218:151

    Article  CAS  Google Scholar 

  44. Sun SS, Mao DS, Yu J (2015) J Rare Earth 33:1268

    Article  CAS  Google Scholar 

  45. Graham GW, Weber WH, Peters CR, Usmen R (1991) J Catal 130:310

    Article  CAS  Google Scholar 

  46. Li J, Han YX, Zhu YH, Zhou RX (2011) Appl Catal B 109:72

    Google Scholar 

  47. Maity SK, Rana MS, Srinivas BN, Bej SK, Prasado TSR (2000) J Mol Catal A 153:121

    Article  CAS  Google Scholar 

  48. Dong XF, Zou HB, Lin WM (2006) Int J Hydrogen Energy 31:2337

    Article  CAS  Google Scholar 

  49. Shi YZ, Zhao B, Wang MZ, Liu QX, Wang J, Long KX, Duan YK, Ning P (2017) J CO2 Util 17:10

    Article  Google Scholar 

  50. Gamarra D, Lopez Camara A, Monte M, Rasmussen SB, Chinchilla LE, Hungria AB, Munuera G, Gyorffy N, Schay Z, Corberan VC, Conesa JC, Martinez-Arias A (2013) Appl Catal B 131:224

    Article  Google Scholar 

  51. Tsipouriari VA, Efstathiou AM, Verykios XE (1996) J Catal 161:31

    Article  CAS  Google Scholar 

  52. Tang X, Zhang B, Li Y, Xu Y, Xin Q, Shen W (2004) Catal Today 95:191

    Article  Google Scholar 

  53. Li F, Fujimoto K (1997) J Catal 172:238

    Article  Google Scholar 

  54. Silva AM, Costa LOO, Barandas APMG, Borges LEP, Mattos LV, Noronha FB (2008) Catal Today 133–135:755

  55. Mikulová J, Barbier J Jr, Rossignol S, Mesnard D, Duprez D, Kappenstein C (2007) Appl Catal B 72:1

    Article  Google Scholar 

  56. Zafiris GS, Gorte J (1993) J Catal 139:561

    Article  CAS  Google Scholar 

  57. Song ZX, Liu W, Nishiguchi H, Takami A, Nagaoka K, Takita Y (2007) Appl Catal A 329:86

    Article  CAS  Google Scholar 

  58. Vo DVN, Nguyen TH, Kennedy EM, Dlugogorski BZ, Adesina AA (2011) Catal Today 175:450

    Article  CAS  Google Scholar 

  59. Zhang JS, Li FX (2015) Appl Catal B 176–177:513

    Article  Google Scholar 

  60. Cai WJ, Wang FG, Daniel C, van Veen AC, Schuurman Y, Descorme C, Provendier H, Shen WJ, Mirodatos C (2012) J Catal 286:137

    Article  CAS  Google Scholar 

  61. Cai W, Homs N, Ramirez de la Piscina P (2012) Green Chem 14:1035

    Article  CAS  Google Scholar 

  62. da Silva AM, de Souza KR, Jacobs G, Graham UM, Davis BH, Mattos LV, Noronha FB (2011) Appl Catal B 102:94

    Article  CAS  Google Scholar 

  63. Jankhah S, Abatzoglou N, Gitzhofer F (2008) Int J Hydrogen Energy 33:4769

    Article  CAS  Google Scholar 

  64. De Oliveira-Vigier K, Abatzoglou N, Gitzhofer F (2005) Can J Chem Eng 83:978

    Article  Google Scholar 

Download references

Acknowledgements

The authors sincerely acknowledge the financial support from Natural Science Foundation of Liaoning Province (Grant Number 20170540073), State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University (Grant Number 2017-17) and State Key Laboratory Breeding Base of Coal Science and Technology Co-founded by Shanxi Province and the Ministry of Science and Technology, Taiyuan University of Technology (Grant Number mkx201704).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weijie Cai or Congming Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, D., Cai, W., Li, Y. et al. Syngas Production from Ethanol Dry Reforming over Cu/Ce0.8Zr0.2O2 Catalyst. Catal Lett 147, 2929–2939 (2017). https://doi.org/10.1007/s10562-017-2216-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-017-2216-0

Keywords

Navigation