Skip to main content

Advertisement

Log in

Oxygen Mobility in Pre-Reduced Nano- and Macro-Ceria with Co Loading: An AP-XPS, In-Situ DRIFTS and TPR Study

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The size effect of ceria nanoparticles on surface oxygen mobility and formation of surface oxygen vacancies in ethanol steam reforming was investigated. Higher concentration of Ce3+ surface sites of the ceria nano-particles (~4 nm, NP) was observed compared to the micro-particles (~120 nm, MP). Similarly, studies using ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) exhibited higher intensity of O1s assigned to the hydroxyl group bonding to Ce3+ and significantly lower intensity for lattice oxygen, stemming from an increase in the number of oxygen vacancies and enhanced oxygen mobility in the nano-ceria under ethanol steam reforming conditions. The presence of fully reduced cobalt particles (Coo) facilitated ceria reduction through hydrogen spillover. The comparison of cerium oxidation states between pre-reduced CeO2 and pre-reduced Co/CeO2 indicated higher extent of reduction of cerium in the case of Co/CeO2 for ethanol steam reforming. These results, together with our previous investigations where higher Ce3+ was observed over CeO2 compared to Co/CeO2 after pre-oxidation treatments, indicate that the initial state of cobalt in Co/CeO2 affects the oxidation state of cerium. Lastly, both nano-ceria and micro-ceria bare supports showed moderate C–C cleavage activities in ethanol steam reforming where better activity was observed over nano-ceria. Formate species were observed predominantly in the DRIFTS spectra of the nano-ceria whereas major species were acetates for micro-ceria. The dissimilarity in the reaction network was attributed to the difference in the number of surface oxygen vacancies. The Co/CeO2-NP catalyst was found more active compared to Co/CeO2-MP with higher hydrogen yield and ethanol conversion.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Trovarelli A, de Leitenburg C, Boaro M, Dolcetti G (1999) The utilization of ceria in industrial catalysis. Catal Today 50:353–367

    Article  CAS  Google Scholar 

  2. Aneggi E, Boaro M, Colussi S, de Leitenburg C, Trovarelli A (2016) Ceria-Based Mater Catal 50:209–242

    Google Scholar 

  3. Zhang C, Michaelides A, King DA, Jenkins SJ (2009) Oxygen vacancy clusters on ceria: decisive role of ceriumfelectrons., Phys Rev B 79

  4. Lan L, Chen S, Cao Y, Zhao M, Gong M, Chen Y (2015) Preparation of ceria-zirconia by modified coprecipitation method and its supported Pd-only three-way catalyst. J Colloid Interface Sci 450:404–416

    Article  CAS  Google Scholar 

  5. Wang Q, Li G, Zhao B, Zhou R (2011) The effect of rare earth modification on ceria–zirconia solid solution and its application in Pd-only three-way catalyst. J Mol Catal A 339:52–60

    Article  CAS  Google Scholar 

  6. Rodriguez JA, Grinter DC, Liu Z, Palomino RM, Senanayake SD (2017) Ceria-based model catalysts: fundamental studies on the importance of the metal-ceria interface in CO oxidation, the water-gas shift, CO2 hydrogenation, and methane and alcohol reforming., Chem Soc Rev 46:1824–1841

    Article  CAS  Google Scholar 

  7. Colussi S, Katta L, Amoroso F, Farrauto RJ, Trovarelli A (2014) Ceria-based palladium zinc catalysts as promising materials for water gas shift reaction. Catal Commun 47:63–66

    Article  CAS  Google Scholar 

  8. Vecchietti J, Bonivardi A, Xu W, Stacchiola D, Delgado JJ, Calatayud M, Collins SE (2014) Understanding the role of oxygen vacancies in the water gas shift reaction on ceria-supported platinum catalysts. ACS Catal 4:2088–2096

    Article  CAS  Google Scholar 

  9. Dejhosseini M, Aida T, Watanabe M, Takami S, Hojo D, Aoki N, Arita T, Kishita A, Adschiri T (2013) Catalytic cracking reaction of heavy oil in the presence of cerium oxide nanoparticles in supercritical water. Energy Fuels 27:4624–4631

    Article  CAS  Google Scholar 

  10. Golmohammadi M, Ahmadi SJ, Towfighi J (2016) Catalytic cracking of heavy petroleum residue in supercritical water: Study on the effect of different metal oxide nanoparticles. J Supercrit Fluids 113:136–143

    Article  CAS  Google Scholar 

  11. Zhu B, Fan L, Lund P (2013) Breakthrough fuel cell technology using ceria-based multi-functional nanocomposites. Appl Energy 106:163–175

    Article  CAS  Google Scholar 

  12. Fan L, Wang C, Chen M, Zhu B (2013) Recent development of ceria-based (nano)composite materials for low temperature ceramic fuel cells and electrolyte-free fuel cells. J Power Sour 234:154–174

    Article  CAS  Google Scholar 

  13. Jiang T, Wang Z, Zhang J, Hao X, Rooney D, Liu Y, Sun W, Qiao J, Sun K, Hay R (2015) Understanding the flash sintering of rare-earth-doped ceria for solid oxide fuel cell. J Am Ceram Soc 98:1717–1723

    Article  CAS  Google Scholar 

  14. Rico Pérez V, Ángeles M, Velasco Beltrán Q, He Q, Wang C, de Lecea CS, López AB (2013) Preparation of ceria-supported rhodium oxide sub-nanoparticles with improved catalytic activity for CO oxidation. Catal Commun 33:47–50

    Article  Google Scholar 

  15. Ayodele BV, Khan MR, Cheng CK (2016) Catalytic performance of ceria-supported cobalt catalyst for CO-rich hydrogen production from dry reforming of methane. Int J Hydrogen Energy 41:198–207

    Article  CAS  Google Scholar 

  16. Bayram B, Soykal II, von Deak D, Miller JT, Ozkan US (2011) Ethanol steam reforming over Co-based catalysts: Investigation of cobalt coordination environment under reaction conditions. J Catal 284:77–89

    Article  CAS  Google Scholar 

  17. Song H, Ozkan US (2009) Changing the oxygen mobility in Co/Ceria catalysts by Ca incorporation: implications for ethanol steam reforming. J Phys Chem A 114:3796–3801

    Article  Google Scholar 

  18. Soykal II, Sohn H, Ozkan US (2012) Effect of support particle size in steam reforming of ethanol over Co/CeO2 catalysts. ACS Catal 2:2335–2348

    Article  CAS  Google Scholar 

  19. Li D, Zeng L, Li X, Wang X, Ma H, Assabumrungrat S, Gong J (2015) Ceria-promoted Ni/SBA-15 catalysts for ethanol steam reforming with enhanced activity and resistance to deactivation. Appl Catal B 176:532–541

    Article  Google Scholar 

  20. Siang J-Y, Lee C-C, Wang C-H, Wang W-T, Deng C-Y, Yeh C-T, Wang C-B (2010) Hydrogen production from steam reforming of ethanol using a ceria-supported iridium catalyst: Effect of different ceria supports. Int J Hydrogen Energy 35:3456–3462

    Article  CAS  Google Scholar 

  21. He Z, Wang X (2015) Renewable energy and fuel production over transition metal oxides: the role of oxygen defects and acidity. Catal Today 240:220–228

    Article  CAS  Google Scholar 

  22. Dan M, Mihet M, Tasnadi-Asztalos Z, Imre-Lucaci A, Katona G, Lazar MD (2015) Hydrogen production by ethanol steam reforming on nickel catalysts: effect of support modification by CeO2 and La2O3. Fuel 147:260–268

    Article  CAS  Google Scholar 

  23. Sharma YC, Kumar A, Prasad R, Upadhyay SN (2017) Ethanol steam reforming for hydrogen production: latest and effective catalyst modification strategies to minimize carbonaceous deactivation. Renew Sustain Energy Rev 74:89–103

    Article  CAS  Google Scholar 

  24. Cifuentes B, Valero M, Conesa J, Cobo M (2015) Hydrogen production by steam reforming of ethanol on Rh-Pt catalysts: influence of CeO2, ZrO2, and La2O3 as supports. Catalysts 5:1872–1896

    Article  CAS  Google Scholar 

  25. Divins NJ, Angurell I, Escudero C, Pérez-Dieste V, Llorca J (2014) Influence of the support on surface rearrangements of bimetallic nanoparticles in real catalysts. Science 346:620–623

    Article  CAS  Google Scholar 

  26. Liu Z, Senanayake SD, Rodriguez JA (2016) Elucidating the interaction between Ni and CeOx in ethanol steam reforming catalysts: a perspective of recent studies over model and powder systems. Appl Catal B 197:184–197

    Article  CAS  Google Scholar 

  27. Turczyniak S, Luo W, Papaefthimiou V, Ramgir NS, Haevecker M, Machocki A, Zafeiratos S (2015) A comparative ambient pressure X-ray photoelectron and absorption spectroscopy study of various cobalt-based catalysts in reactive atmospheres. Top Catal 59:532–542

    Article  Google Scholar 

  28. Óvári L, Krick Calderon S, Lykhach Y, Libuda J, Erdőhelyi A, Papp C, Kiss J, Steinrück HP (2013) Near ambient pressure XPS investigation of the interaction of ethanol with Co/CeO2(111). J Catal 307:132–139

    Article  Google Scholar 

  29. Liu Z, Duchon T, Wang H, Grinter DC, Waluyo I, Zhou J, Liu Q, Jeong B, Crumlin EJ, Matolin V, Stacchiola DJ, Rodriguez JA, Senanayake SD (2016) Ambient pressure XPS and IRRAS investigation of ethanol steam reforming on Ni-CeO2(111) catalysts: an in situ study of C–C and O–H bond scission. Phys Chem Chem Phys 18:16621–16628

    Article  CAS  Google Scholar 

  30. Divins NJ, Llorca J (2016) In situ photoelectron spectroscopy study of ethanol steam reforming over RhPd nanoparticles and RhPd/CeO2. Appl Catal A 518:60–66

    Article  CAS  Google Scholar 

  31. Sohn H, Soykal II, Zhang S, Shan J, Tao F, Miller JT, Ozkan US (2016) Effect of cobalt on reduction characteristics of ceria under ethanol steam reforming conditions: AP-XPS and XANES studies. J Phys Chem C 120:14631–14642

    Article  CAS  Google Scholar 

  32. Soykal II, Sohn H, Singh D, Miller JT, Ozkan US (2014) Reduction characteristics of ceria under ethanol steam reforming conditions: effect of the particle size. ACS Catal 4:585–592

    Article  CAS  Google Scholar 

  33. Tao FF (2012) Design of an in-house ambient pressure AP-XPS using a bench-top X-ray source and the surface chemistry of ceria under reaction conditions. Chem Commun 48:3812–3814

    Article  CAS  Google Scholar 

  34. Shan J-j., Nguyen L, Zhang S, Tao F-F (2015) Water–gas shift on Pd/α-MnO2 and Pt/α-MnO2. Catal Lett 145:1571–1580

    Article  CAS  Google Scholar 

  35. Boaro M, Vicario M, de Leitenburg C, Dolcetti G, Trovarelli A (2003) The use of temperature-programmed and dynamic/transient methods in catalysis: characterization of ceria-based, model three-way catalysts. Catal Today 77:407–417

    Article  CAS  Google Scholar 

  36. Aliotta C, Liotta LF, La Parola V, Martorana A, Muccillo ENS., Muccillo R, Deganello F (2016) Ceria-based electrolytes prepared by solution combustion synthesis: the role of fuel on the materials properties. Appl Catal B 197:14–22

    Article  CAS  Google Scholar 

  37. Wang Y, Liang S, Cao A, Thompson RL, Veser G (2010) Au-mixed lanthanum/cerium oxide catalysts for water gas shift. Appl Catal B 99:89–95

    Article  CAS  Google Scholar 

  38. Abdelouahab-Reddam Z, El Mail R, Coloma F, Sepúlveda-Escribano A (2015) Platinum supported on highly-dispersed ceria on activated carbon for the total oxidation of VOCs., Appl Catal A 494:87–94

    Article  CAS  Google Scholar 

  39. Moraes TS, Neto R.C.R., Ribeiro MC, Mattos LV, Kourtelesis M, Verykios X, Noronha FB (2015) Effects of ceria morphology on catalytic performance of Ni/CeO2 catalysts for low temperature steam reforming of ethanol. Top Catal 58:281–294

    Article  CAS  Google Scholar 

  40. Rao GR, Mishra BG (2003) Structural, redox and catalytic chemistry of ceria based materials. Bull Catal Soc India 2:122–134

    Google Scholar 

  41. Xu J, Harmer J, Li G, Chapman T, Collier P, Longworth S, Tsang SC (2010) Size dependent oxygen buffering capacity of ceria nanocrystals. Chem Commun 46:1887–1889

    Article  CAS  Google Scholar 

  42. Zhou X-D, Huebner W (2001) Size-induced lattice relaxation in CeO2 nanoparticles. Appl Phys Lett 79:3512–3514

    Article  CAS  Google Scholar 

  43. Deshpande S, Patil S, Kuchibhatla SV, Seal S (2005) Size dependency variation in lattice parameter and valency states in nanocrystalline cerium oxide. Appl Phys Lett 87:133113

    Article  Google Scholar 

  44. Liu X, Zhou K, Wang L, Wang B, Li Y (2009) Oxygen vacancy clusters promoting reducibility and activity of ceria nanorods. J Am Chem Soc 131:3140–3141

    Article  CAS  Google Scholar 

  45. Naganuma T, Traversa E (2012) Stability of the Ce3+ valence state in cerium oxide nanoparticle layers. Nanoscale 4:4950–4953

    Article  CAS  Google Scholar 

  46. Song W, Poyraz AS, Meng Y, Ren Z, Chen S-Y, Suib SL (2014) Mesoporous Co3O4 with controlled porosity: inverse micelle synthesis and high-performance catalytic CO oxidation at –60 °C. Chem Mater 26:4629–4639

    Article  CAS  Google Scholar 

  47. Romar H, Lillebo AH, Tynjala P, Hu T, Holmen A, Blekkan EA, Lassi U (2016) H2-TPR, XPS and TEM study of the reduction of Ru and Re promoted Co/γ-Al2O3, Co/TiO2 and Co/SiC Catalysts. J Mater Sci Res 5:39

    Article  CAS  Google Scholar 

  48. Lou Y, Wang L, Zhao Z, Zhang Y, Zhang Z, Lu G, Guo Y, Guo Y (2014) Low-temperature CO oxidation over Co3O4-based catalysts: significant promoting effect of Bi2O3 on Co3O4 catalyst. Appl Catal B 146:43–49

    Article  CAS  Google Scholar 

  49. Song H, Ozkan US (2010) The role of impregnation medium on the activity of ceria-supported cobalt catalysts for ethanol steam reforming. J Mol Catal A 318:21–29

    Article  CAS  Google Scholar 

  50. Luo J, Meng M, Li X, Li X, Zha Y, Hu T, Xie Y, Zhang J (2008) Mesoporous Co3O4–CeO2 and Pd/Co3O4–CeO2 catalysts: synthesis, characterization and mechanistic study of their catalytic properties for low-temperature CO oxidation. J Catal 254:310–324

    Article  CAS  Google Scholar 

  51. Conner WC, Falconer JL (1995) Spillover in heterogeneous catalysis. Chem Rev 95:759–788

    Article  CAS  Google Scholar 

  52. Sasikala R, Kulshreshtha SK (2004) Temperature programmed reduction studies of spillover effect in Pd impregnated metal oxide catalysts. J Therm Anal Calorim 78:723–729

    Article  CAS  Google Scholar 

  53. Gao Y, Wang W, Chang S, Huang W (2013) Morphology effect of CeO2 support in the preparation, metal-support interaction, and catalytic performance of Pt/CeO2 catalysts. ChemCatChem 5:3610–3620

    Article  CAS  Google Scholar 

  54. Song D, Li J (2006) Effect of catalyst pore size on the catalytic performance of silica supported cobalt Fischer–Tropsch catalysts. J Mol Catal A 247:206–212

    Article  CAS  Google Scholar 

  55. Lira E, López CM, Oropeza F, Bartolini M, Alvarez J, Goldwasser M, Linares FL, Lamonier J-F, Zurita MJ (2008) HMS mesoporous silica as cobalt support for the Fischer–Tropsch synthesis: pretreatment, cobalt loading and particle size effects. J Mol Catal A 281:146–153

    Article  CAS  Google Scholar 

  56. Varga E, Ferencz Z, Oszkó A, Erdőhelyi A, Kiss J (2015) Oxidation states of active catalytic centers in ethanol steam reforming reaction on ceria based Rh promoted Co catalysts: An XPS study. J Mol Catal A 397:127–133

    Article  CAS  Google Scholar 

  57. Mei Z, Li Y, Fan M, Zhao L, Zhao J (2015) Effect of the interactions between Pt species and ceria on Pt/ceria catalysts for water gas shift: The XPS studies. Chem Eng J 259:293–302

    Article  CAS  Google Scholar 

  58. Kato S, Ammann M, Huthwelker T, Paun C, Lampimaki M, Lee MT, Rothensteiner M, van Bokhoven JA (2015) Quantitative depth profiling of Ce(3+) in Pt/CeO2 by in situ high-energy XPS in a hydrogen atmosphere. Phys Chem Chem Phys 17:5078–5083

    Article  CAS  Google Scholar 

  59. Jung Y, Yang W, Koo CY, Song K, Moon J (2012) High performance and high stability low temperature aqueous solution-derived Li–Zr co-doped ZnO thin film transistors. J Mater Chem 22:5390

    Article  CAS  Google Scholar 

  60. Jain R, Dubey A, Ghosalya MK, Gopinath CS (2016) Gas–solid interaction of H2–Ce0.95Zr0.05O2: new insights into surface participation in heterogeneous catalysis. Catal Sci Technol 6:1746–1756

    Article  CAS  Google Scholar 

  61. Younis A, Chu D, Kaneti YV, Li S (2016) Tuning the surface oxygen concentration of {111} surrounded ceria nanocrystals for enhanced photocatalytic activities. Nanoscale 8:378–387

    Article  CAS  Google Scholar 

  62. Biesinger MC, Payne BP, Grosvenor AP, Lau LWM, Gerson AR, Smart RSC (2011) Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni, Appl Surf Sci 257:2717–2730

    Article  CAS  Google Scholar 

  63. Domínguez M, Taboada E, Idriss H, Molins E, Llorca J (2010) Fast and efficient hydrogen generation catalyzed by cobalt talc nanolayers dispersed in silica aerogel. J Mater Chem 20:4875

    Article  Google Scholar 

  64. Ernst B, Bensaddik A, Hilaire L, Chaumette P, Kiennemann A (1998) Study on a cobalt silica catalyst during reduction and Fischer–Tropsch reaction: in situ EXAFS compared to XPS and XRD. Catal Today 39:329–341

    Article  CAS  Google Scholar 

  65. Li J, Xiong S, Li X, Qian Y (2012) Spinel Mn1.5Co1.5O4 core–shell microspheres as Li-ion battery anode materials with a long cycle life and high capacity. J Mater Chem 22:23254

    Article  CAS  Google Scholar 

  66. Petitto SC, Marsh EM, Carson GA, Langell MA (2008) Cobalt oxide surface chemistry: the interaction of CoO(100), Co3O4(110) and Co3O4(111) with oxygen and water. J Mol Catal A 281:49–58

    Article  CAS  Google Scholar 

  67. Jacobs G, Keogh R, Davis B (2007) Steam reforming of ethanol over Pt/ceria with co-fed hydrogen. J Catal 245:326–337

    Article  CAS  Google Scholar 

  68. da Silva DCD, Letichevsky S, Borges LEP, Appel LG (2015) Elimination of acetaldehyde from hydrogen rich streams employing Ni/ZrO2. Int J Hydrogen Energy 40:8706–8712

    Article  Google Scholar 

  69. Song H, Mirkelamoglu B, Ozkan US (2010) Effect of cobalt precursor on the performance of ceria-supported cobalt catalysts for ethanol steam reforming. Appl Catal A 382:58–64

    Article  CAS  Google Scholar 

  70. Choong C, Zhong Z, Huang L, Borgna A, Hong L, Chen L, Lin J (2014) Infrared evidence of a formate-intermediate mechanism over Ca-modified supports in low-temperature ethanol steam reforming. ACS Catal 4:2359–2363

    Article  CAS  Google Scholar 

  71. Sanchez-Sanchez MC, Navarro Yerga RM, Kondarides DI, Verykios XE, Fierro JLG (2009) Mechanistic aspects of the ethanol steam reforming reaction for hydrogen production on Pt, Ni, and PtNi catalysts supported on γ-Al2O3. J Phys Chem A 114:3873–3882

    Article  Google Scholar 

  72. Yee A, Morrison S, Idriss H (1999) A study of the reactions of ethanol on CeO2 and Pd/CeO2 by steady state reactions, temperature programmed desorption, and in situ FT-IR. J Catal 186:279–295

    Article  CAS  Google Scholar 

  73. Erdőhelyi A, Raskó J, Kecskés T, Tóth M, Dömök M, Baán K (2006) Hydrogen formation in ethanol reforming on supported noble metal catalysts. Catal Today 116:367–376

    Article  Google Scholar 

  74. de Lima SM, Silva AM, da Cruz IO, Jacobs G, Davis BH, Mattos LV, Noronha FB (2008) H2 production through steam reforming of ethanol over Pt/ZrO2, Pt/CeO2 and Pt/CeZrO2 catalysts. Catal Today 138:162–168

    Article  Google Scholar 

  75. Osorio-Vargas P, Campos CH, Navarro RM, Fierro JL, Reyes P (2015) Improved ethanol steam reforming on Rh/Al2O3 catalysts doped with CeO2 or/and La2O3: influence in reaction pathways including coke formation. Appl Catal A 505:159–172

    Article  CAS  Google Scholar 

  76. Akdim O, Cai W, Fierro V, Provendier H, van Veen A, Shen W, Mirodatos C (2008) Oxidative steam reforming of ethanol over Ni–Cu/SiO2, Rh/Al2O3 and Ir/CeO2: effect of metal and support on reaction mechanism. Top Catal 51:22–38

    Article  CAS  Google Scholar 

  77. Llorca J, Homs N, de la Piscina PR (2004) In situ DRIFT-mass spectrometry study of the ethanol steam-reforming reaction over carbonyl-derived Co/ZnO catalysts. J Catal 227:556–560

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the US Department of Energy for the Grant DE-FG36-05GO15033 for our funding. The authors acknowledge Hendrik E. Colijn for his invaluable help in taking and analyzing the digital micrographs. F.T. acknowledges financial support from the NSF Career Award NSF-CHE-14162121, Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy, under Grant No. DE-SC0014561.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Franklin Feng Tao or Umit S. Ozkan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sohn, H., Celik, G., Gunduz, S. et al. Oxygen Mobility in Pre-Reduced Nano- and Macro-Ceria with Co Loading: An AP-XPS, In-Situ DRIFTS and TPR Study. Catal Lett 147, 2863–2876 (2017). https://doi.org/10.1007/s10562-017-2176-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-017-2176-4

Keywords

Navigation