Skip to main content
Log in

Exploring Pd/Al2O3 Catalysed Redox Isomerisation of Allyl Alcohol as a Platform to Create Structural Diversity

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

We report our results on exploiting the different reactivities present in the catalytic cycle of the Pd/Al2O3 catalyzed redox isomerization of allyl alcohol. We show that the reactivity of allyl alcohol derived acrolein and enol can be involved in further cascade reactions leading to a diverse set of products. While the oxidation product acrolein can react via Michael and oxa-Michael reactions, the isomerization product enol can be readily involved in aldol condensation processes. Salicylaldehydes, that are able to react on their electrophilic carbonyl and nucleophilic OH-groups with allyl alcohol derived enol and acrolein, respectively, are used to explore conditions where the structure of the product heterocycles can be controlled.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. Note that the simplified mechanism presented here is based on recent mechanistic studies on Ru and Rh based catalysts and only aimed at showing the key intermediates whose reactivity could be exploited. For more mechanistic insights see refs. [10,11,12,13] and references therein.

  2. Note that allyl alcohol itself could be used for allylation also in Tsuji-Trost type reactions. For an overview see Muzart [15].

  3. Our earlier results (see ref. [21]) showed that reductive pretreatment of the catalyst results in a decreased activity, hence we used the as-received catalysts throughout the present study.

References

  1. Sheldon RA, Arends I, Hanefeld U (2007) In: Green chemistry and catalysis. Wiley-VCH, Weinheim

    Book  Google Scholar 

  2. Trost BM (1991) Science 254:1471

    Article  CAS  Google Scholar 

  3. Kolb HC, Finn MG, Sharpless KB (2001) Angew Chem Int Ed 40:2004

    Article  CAS  Google Scholar 

  4. Broadwater SJ, Roth SL, Price KE, Kobaslija M, McQuade DT (2005) Org Biomol Chem 3:2899

    Article  CAS  Google Scholar 

  5. Felpin FX, Fouquet E (2008) ChemSusChem 1:718

    Article  CAS  Google Scholar 

  6. Climent MJ, Corma A, Iborra S (2011) Chem Rev 111:1072

    Article  CAS  Google Scholar 

  7. Daştan A, Kulkarni A, Török B (2014) Green Chem 14:17

    Google Scholar 

  8. Climent MJ, Corma A, Iborra S, Sabater MJ (2014) ACS Catal 4:870

    Article  CAS  Google Scholar 

  9. Climent MJ, Corma A, Iborra S (2009) ChemSusChem 2:500

    Article  CAS  Google Scholar 

  10. van der Drift RC, Bouwman E, Drent E (2002) J Organomet Chem 650:1

    Article  Google Scholar 

  11. Uma R, Crévisy C, Grée R (2003) Chem Rev 103:27

    Article  CAS  Google Scholar 

  12. Cadierno V, Crochet P, Gimeno J (2008) Synlett 1105

  13. Mantilli L, Mazet C (2011) Chem Lett 40:341

    Article  CAS  Google Scholar 

  14. Ahlsten N, Bartoszewicz A, Martín-Matute B (2012) Dalton Trans 41:1660

    Article  CAS  Google Scholar 

  15. Muzart J (2005) Tetraherdon 61:4179.

    Article  CAS  Google Scholar 

  16. Zharmagambetova AK, Ergozhin EE, Sheludyakov YL, Mukhamedzhanova SG, Kurmanbayeva IA, Selenova BA, Utkelov BA (2001) J Mol Catal A 177:165

    Article  CAS  Google Scholar 

  17. Musolino MG, Cutrupi CMS, Donato A, Pietropaolo D, Pietropaolo R (2003) Appl Catal A 243:333

    Article  CAS  Google Scholar 

  18. Musolino MG, De Maio P, Donato A, Pietropaolo R (2004) J Mol Catal A 208:219

    Article  CAS  Google Scholar 

  19. Musolino MG, Caia CV, Mauriello F, Pietropaolo R (2010) Appl Catal A 390:141

    Article  CAS  Google Scholar 

  20. Sadeghmoghaddam E, Gaieb K, Shon YS (2011) Appl Catal A 405:137

    Article  CAS  Google Scholar 

  21. Zsolnai D, Mayer P, Szőri K, London G (2016) Catal Sci Technol 6:3814

    Article  CAS  Google Scholar 

  22. Lee AF, Hackett SFJ, Hargreaves JSJ, Wilson K (2006) Green Chem 8:549

    Article  CAS  Google Scholar 

  23. Hackett SFJ, Brydson RM, Gass MH, Harvey I, Newman AD, Wilson K, Lee AF (2007) Angew Chem Int Ed 46:8593

    Article  CAS  Google Scholar 

  24. Parlett CMA, Bruce DW, Hondow NS, Lee AF, Wilson K (2011) ACS Catal 1:636

    Article  CAS  Google Scholar 

  25. Parlett CMA, Durndell LJ, Wilson K, Bruce DW, Hondow NS, Lee AF (2014) Catal Commun 44:40

    Article  CAS  Google Scholar 

  26. Muzart J (2003) Tetrahedon 59:5789

    Article  CAS  Google Scholar 

  27. Keresszegi C, Bürgi T, Mallat T, Baiker A (2002) J Catal 211:244

    Article  CAS  Google Scholar 

  28. Mallat T, Baiker A (2004) Chem Rev 104:3037

    Article  CAS  Google Scholar 

  29. Enache DI, Edwards JK, Landon P, Solsona-Espriu B, Carley AF, Herzing AA, Watanabe M, Kiely CJ, Knight DW, Hutchings GJ (2006) Science 211:362

    Article  Google Scholar 

  30. aa

  31. bb

  32. Morad M, Sankar M, Cao E, Nowicka E, Davies TE, Miedziak PJ, Morgan DJ, Knight DW, Bethell D, Gavriilidis A, Hutchings GJ (2014) Catal Sci Technol 4:3120

    Article  CAS  Google Scholar 

  33. Falletta E, Della Pina C, Rossi M, He Q, Kiely CJ, Hutchings GJ (2011) Faraday Discuss 152:367

    Article  CAS  Google Scholar 

  34. Sadeghmoghaddam E, Gu H, Shon Y-S (2012) ACS Catal 2:1838

    Article  CAS  Google Scholar 

  35. Di Pietrantonio K, Coccia F, Tonucci L, d’Alessandro N, Bressan M (2015) RSC Adv 5:68493

    Article  CAS  Google Scholar 

  36. Maung MS, Dinh T, Salazar C, Shon Y-S (2017) Coll Surf A 513:367

    Article  CAS  Google Scholar 

  37. Kon S, Siddiki SMAH, Shimizu KI (2013) J Catal 304:63

    Article  CAS  Google Scholar 

  38. Mo F, Trzepkowski LJ, Dong G (2012) Angew Chem Int Ed 51:13075

    Article  CAS  Google Scholar 

  39. Kaye PT, Musa MA, Nocanda XW, Robinson RS (2003) Org Biomol Chem 1:1133

    Article  CAS  Google Scholar 

  40. Lesch B, Toräng J, Vanderheiden S, Bräse S (2005) Adv Synth Catal 347:555

    Article  CAS  Google Scholar 

  41. Toräng J, Vanderheiden S, Nieger M, Bräse S (2007) Eur J Org Chem 943

  42. Gross U, Gross PJ, Shi M, Bräse S (2011) Synlett 635

  43. Motschi H, Pregosin PS (1979) J Organomet Chem 171:C37

    Article  CAS  Google Scholar 

  44. Motschi H, Pregosin PS, Ruegger H (1980) J Organomet Chem 193:397

    Article  CAS  Google Scholar 

  45. Clark HC, Kurosawa H (1972) J Chem Soc Chem Commun 150

Download references

Acknowledgements

Financial support by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences (AS, GL), the ÚNKP-ÚNKP-16-4 New National Excellence Program of the Ministry of Human Capacities (AS) and the National Research, Development and Innovation Office, Hungary (NKFIH OTKA Grants PD 120877 (AS), PD 115436 (GL) and K 109278 (KS, GL)) is gratefully acknowledged. This collaborative research was partially supported by the “Széchenyi 2020” program in the framework of GINOP-2.3.2-15-2016-00013 “Intelligent materials based on functional surfaces – from syntheses to applications” project and the NKFIH (OTKA) K112531 grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gábor London.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1295 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dékány, A., Lázár, E., Szabó, B. et al. Exploring Pd/Al2O3 Catalysed Redox Isomerisation of Allyl Alcohol as a Platform to Create Structural Diversity. Catal Lett 147, 1834–1843 (2017). https://doi.org/10.1007/s10562-017-2087-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-017-2087-4

Keywords

Navigation