Skip to main content
Log in

Controllable Synthesis of Ru Nanocrystallites on Graphene Substrate as a Catalyst for Ammonia Synthesis

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Controllable synthesis of Ru nanocrystallites on graphene substrate using polyol methods was reported herein. The zeta potential of graphene oxide dispersed in polyols is found to play a key role in tailoring the morphology and oxidation state of Ru nanocrystallites on graphene substrate. Negatively charged graphene oxide can coordinate with Ru3+ precursors via its carboxylic acid groups to form C–O–Ru complexes, leading to the epitaxial growth of hexagonally shaped cationic ruthenium nanocrystallites of 3–5 nm, which shows high catalytic activities for ammonia synthesis as expected; whereas positively charged graphene oxides can only interact with Ru3+ precursors via Van der Waals forces, resulting in a significant agglomeration of metallic ruthenium nanoparticles and thus a low catalytic performance.

Graphical Abstract

The morphology and oxidation state of ruthenium nanocrystallites supported on graphene substrate, thus the catalytic activity for ammonia synthesis, can be tailored by tuning the zeta potential of graphene oxide dispersed in polyols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chang WK, Cha HG, Kim YH, Jadhav AP, Ji ES, Kang DI, Kang YS (2009) J Phys Chem C 113:5081

    Article  Google Scholar 

  2. Park J, Joo J, Kwon SG, Jang Y, Hyeon T (2007) Angew Chem Int Ed 46:4630

    Article  CAS  Google Scholar 

  3. Dong H, Chen YC, Feldmann C (2015) Green Chem 17:4107

    Article  CAS  Google Scholar 

  4. Sato K, Imamura K, Kawano Y, Miyahara S-i, Yamamoto T, Matsumura S, Nagaoka K (2017) Chem Sci 8:674

    Article  CAS  Google Scholar 

  5. Bielawa H, Hinrichsen O, Birkner A, Muhler M (2001) Angew Chem Int Ed 40:1061

    Article  CAS  Google Scholar 

  6. Szmigiel D, Raróg-Pilecka W, Miśkiewicz E, Maciejewska E, Kaszkur Z, Sobczak JW, Kowalczyk Z (2005) Catal Lett 100:79

    Article  CAS  Google Scholar 

  7. Rarogpilecka W, Miskiewicz E, Szmigiel D, Kowalczyk Z (2005) J Catal 231:11

    Article  CAS  Google Scholar 

  8. Jacobsen CJH, Dahl S, Hansen PL, Törnqvist E, Jensen L, Topsøe H, Prip DV, Møenshaug PB, Chorkendorff I (2000) J Mol Catal A 163:19

    Article  CAS  Google Scholar 

  9. Hansen TW, Hansen PL, Dahl S, Jacobsen CJH (2002) Catal Lett 84:7

    Article  CAS  Google Scholar 

  10. Brown DE, Edmonds T, Joyner RW, McCarroll JJ, Tennison SR (2014) Catal Lett 144:545

    Article  CAS  Google Scholar 

  11. Dahl S, Logadottir A, Jacobsen CJH, Norskov JK (2001) Appl Catal A 222:19

    Article  CAS  Google Scholar 

  12. Ma Z, Zhao S, Xiong X, Hu B, Song C (2016) Catal Lett 146:2324

    Article  CAS  Google Scholar 

  13. Kowalczyk Z, Sentek J, Jodzis S, Mizera E, Góralski J, Paryjczak T, Diduszko R (1997) Catal Lett 45:65

    Article  CAS  Google Scholar 

  14. Huo C, Xia QH, Pan MH, Liu HZ (2011) Catal Lett 141:1275

    Article  CAS  Google Scholar 

  15. Lin B, Wang R, Lin J, Ni J, Wei K (2011) Catal Lett 141:1557

    Article  CAS  Google Scholar 

  16. You Z, Inazu K, Aika K, Baba T (2007) J Catal 251:321

    Article  CAS  Google Scholar 

  17. Davis RJ (2003) J Catal 216:396

    Article  CAS  Google Scholar 

  18. Kitano M, Inoue Y, Yamazaki Y, Hayashi F, Kanbara S, Matsuishi S, Yokoyama T, Kim SW, Hara M, Hosono H (2012) Nat Chem 4:934

    Article  CAS  Google Scholar 

  19. Novoselov K, Geim A, Morozov S, Jiang D, Zhang Y, Dubonos S, Grigorieva I, Firsov A (2004) Science 306:666

    Article  CAS  Google Scholar 

  20. Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Adv Mater 22:3906

    Article  CAS  Google Scholar 

  21. Song Z, Cai T, Hanson JC, JAR, Hrbek J (2004) J Am Chem Soc 126:8576

    Article  CAS  Google Scholar 

  22. Navalon S, Dhakshinamoorthy A, Alvaro M, Garcia H (2016) Coord Chem Rev 312:99

    Article  CAS  Google Scholar 

  23. Machado BF, Serp P (2012) Catal Sci Technol 2:54

    Article  CAS  Google Scholar 

  24. Carroll KJ, Reveles JU, Shultz MD, Khanna SN, Carpenter EE (2011) J Phys Chem C 115:2656

    Article  CAS  Google Scholar 

  25. Skrabalak SE, Wiley BJ, Kim M, Formo EV, Xia Y (2008) Nano Lett 8:2077

    Article  CAS  Google Scholar 

  26. Joseyphus RJ, Matsumoto T, Takahashi H, Kodama D, Tohji K, Jeyadevan B (2007) J Solid State Chem 180:3008

    Article  CAS  Google Scholar 

  27. Bonet F, Delmas V, Grugeon S, Urbina RH, Silvert PY, Tekaia-Elhsissen K (1999) Nanostruct Mater 11:1277.

    Article  CAS  Google Scholar 

  28. Miyazaki A, Balint I, Aika K-i, Nakano Y (2001) J Catal 204:364

    Article  CAS  Google Scholar 

  29. Dimiev A, Kosynkin DV, Alemany LB, Chaguine P, Tour JM (2012) J Am Chem Soc 134:2815

    Article  CAS  Google Scholar 

  30. Chakroune N, Viau G, Ammar S, Poul L, Veautier D, Chehimi MM, Mangeney C, Villain F, Fiévet F (2005) Langmuir 21:6788

    Article  CAS  Google Scholar 

  31. Yan X, Liu H, Kong YL (2001) J Mater Chem 11:3387

    Article  CAS  Google Scholar 

  32. Dahl S, Törnqvist E, Chorkendorff I (2000) J Catal 192:381

    Article  CAS  Google Scholar 

  33. Honkala K, Hellman A, Remediakis IN, Logadottir A, Carlsson A, Dahl S, Christensen CH, Nørskov JK (2005) Science 307:555

    Article  CAS  Google Scholar 

  34. Nethravathi C, Rajamathi M (2008) Carbon 46:1994

    Article  CAS  Google Scholar 

  35. Bianchi CL, Ragaini V, Cattania MG (1991) Mater Chem Phys 29:297

    Article  CAS  Google Scholar 

  36. J.F. Moulder, W.F. Stickle, P.E. Sobol, Bomben KD (1995) Handbook of X-ray photoelectron spectroscopy. Physical Electronics, Inc., Eden Prairie

    Google Scholar 

  37. Narasimharao K, Seetharamulu P, Rama Rao KS, Basahel SN (2016) J Mol Catal A 411:157

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (21573163) and the Natural Science Foundation of Hubei Province (2015CFA017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhixiong You.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2919 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Zhou, J., Yuan, M. et al. Controllable Synthesis of Ru Nanocrystallites on Graphene Substrate as a Catalyst for Ammonia Synthesis. Catal Lett 147, 1363–1370 (2017). https://doi.org/10.1007/s10562-017-2045-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-017-2045-1

Keywords

Navigation