Skip to main content
Log in

Low Temperature Water–Gas Shift/Methanol Steam Reforming: Alkali Doping to Facilitate the Scission of Formate and Methoxy C–H Bonds over Pt/ceria Catalyst

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Doping Pt/ceria catalysts with the Group 1 alkali metals was found to lead to an important weakening of the C–H bond of formate and methoxy species. This was demonstrated by a shift to lower wavenumbers of the formate and methoxy ν(CH) vibrational modes by DRIFTS spectroscopy. Li and Na-doped Pt/ceria catalysts were tested relative to the undoped catalyst for low temperature water–gas shift and methanol steam reforming using a fixed bed reactor and exhibited higher catalytic activity. Steaming of formate and methoxy species pre-adsorbed on the catalyst surface during in-situ DRIFTS spectroscopy suggested that the species were more reactive for dehydrogenation steps in the catalytic cycle for the Li and Na-doped catalysts relative to undoped Pt/ceria. However, with increasing atomic number over the series of alkali-doped catalysts, the stability of a fraction of the carbonate species was found to increase. This was observed during TPD-MS measurements of the adsorbed CO2 probe molecule by a systematic increase of a high temperature peak for a fraction of the CO2 desorbed. This result indicates that alkali-doping is an optimization problem—that is, while improving the dehydrogenation rates of methoxy and formate species, the carbonate intermediate stability increases, making it difficult to liberate the CO2. Infrared spectroscopy results of CO adsorbed on Pt and ceria suggest that the alkali dopant is located on, and electronically modifies, both the Pt and ceria components. The results not only lend further support to the role that methoxy and formate species play as intermediates in the catalytic mechanisms, but also provide a path forward for improving rates by means other than resorting to higher noble metal loadings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sato S, White JM (1980) J Am Chem Soc 102:7206

    Article  CAS  Google Scholar 

  2. Wagner FT, Somorjai GA (1980) J Am Chem Soc 102:5494

    Article  CAS  Google Scholar 

  3. Sato S, White JM (1981) J Catal 69:128

    Article  CAS  Google Scholar 

  4. Vedage GA, Pitchai R, Herman RG, Klier K (1984) Proceedings of the 8th International Congress on Catalysis, Berlin, Germany, pp 47

  5. Klier K (1992) Catal Today 15:361

    Article  CAS  Google Scholar 

  6. Campbell CT, Koel BE, Daube KA (1987) J Vac Sci Technol A 5:810

    Article  CAS  Google Scholar 

  7. Campbell JM, Nakamura J, Campbell CT (1992) J Catal 136:24

    Article  CAS  Google Scholar 

  8. Basinska A, Domka F (1993) Catal Lett 17:327

    Article  CAS  Google Scholar 

  9. Basinska A, Domka F (1997) Catal Lett 43:59

    Article  CAS  Google Scholar 

  10. Jozwiak WK, Basinska A, Goralski J, Maniecki TP, Kincle D, Domka F (2000) Stud Surf Sci Catal 130: 3819

    Article  Google Scholar 

  11. Luukkanen S, Homanen P, Haukka M, Pakkanen TA, Deronzier A, Chardon-Noblat S, Zsoldos D, Ziessel R (1999) Appl Catal 185:157

    Article  CAS  Google Scholar 

  12. Luukkanen S, Haukka M, Kallinen M, Pakkanen TA (2000) Catal Lett 70:123

    Article  CAS  Google Scholar 

  13. Brooks CJ, Hagemeyer A, Yaccato K, Carhart R, Herrmann M (2005) 19th North American Meeting of the Catalysis Society, May 22–27, Philadelphia

  14. Yaccato K, Carhart R, Hagemeyer AG, Herrmann M, Lesik A, Strasser P, Turner H, Volpe1 AF, Weinberg H, Brooks CJ (2006) AIChE Spring National Meeting, April 23–27, Orlando

  15. Pigos JM, Brooks CJ, Jacobs G, Davis BH (2006) DRIFTS Studies of platinum-based zirconia catalyst promoted with sodium discovered by combinatorial methods. Prepr Am Chem Soc Div Pet Chem

  16. Pigos JM, Brooks CJ, Jacobs G, Davis BH (2006) Evidence of enhanced LTS water–gas shift rate with Sodium promoted Pt–ZrO2-based catalyst discovered by combinatorial methods, AIChE Annual Meeting abstract

  17. Pigos JM, Brooks CJ, Jacobs G, Davis BH (2007) Appl Catal A Gen 319:47

    Article  CAS  Google Scholar 

  18. Pigos JM, Brooks CJ, Jacobs G, Davis BH (2007) Appl Catal A Gen 328:14

    Article  CAS  Google Scholar 

  19. Shido T, Iwasawa Y (1993) J Catal 141:71

    Article  CAS  Google Scholar 

  20. Jacobs G, Davis BH, Pigos JM, Brooks CJ (2007) Low temperature water–gas shift: weakening of formate C–H bond observed with alkali doping with Pt/ZrO2 and Pt/CeO2 catalysts, 20th North American Meeting of The Catalysis Society, June 17–22, Houston, TX

  21. Jacobs G, Davis BH (2005) Appl Catal A Gen 285:43

    Article  CAS  Google Scholar 

  22. Jacobs G, Patterson PM, Graham UM, Crawford AC, Dozier A, Davis BH (2005) J Catal 235:79

    Article  CAS  Google Scholar 

  23. Li Y, Fu Q, Flytzani-Stephanopoulos M (2000) Appl Catal B 27:179

    Article  Google Scholar 

  24. Lavalley JC (1996) Catal Today 27:377

    Article  CAS  Google Scholar 

  25. Yao HC, Yu Yao YF (1984) J Catal 86:254

    Article  CAS  Google Scholar 

  26. Laachir A, Perrichon V, Badri A, Lamotte J, Catherine E, Lavalley JC, El Fallah J, Hilaire L, Le Normand F, Quemere E, Sauvion GN, Touret O (1991) J Chem Soc Faraday Trans 87:1601

    Article  CAS  Google Scholar 

  27. Jacobs G, Graham UM, Chenu E, Patterson PM, Dozier A, Davis BH (2005) J Catal 229:499

    Article  CAS  Google Scholar 

  28. Binet C, Daturi M, Lavalley JC (1999) Catal Today 50:207

    Article  CAS  Google Scholar 

  29. Shido T, Iwasawa Y (1992) J Catal 136:493

    Article  CAS  Google Scholar 

  30. Li C, Sakata Y, Arai T, Domen K, Maruya KI, Onishi T (1989) J Chem Soc, Faraday Trans I 85:145

    Article  Google Scholar 

  31. Fukunaga T, Ponec V (1997) Appl Catal A Gen 154:207

    Article  CAS  Google Scholar 

  32. Larsen G, Haller GL (1989) Catal Lett 3:103

    Article  Google Scholar 

  33. Holmgren A, Anderson B, Duprez D (1999) Appl Catal B 22:215

    Article  CAS  Google Scholar 

  34. Binet C, Daturi M (2001) Catal Today 70:155

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was sponsored by the Commonwealth of Kentucky.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burtron H. Davis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evin, H.N., Jacobs, G., Ruiz-Martinez, J. et al. Low Temperature Water–Gas Shift/Methanol Steam Reforming: Alkali Doping to Facilitate the Scission of Formate and Methoxy C–H Bonds over Pt/ceria Catalyst. Catal Lett 122, 9–19 (2008). https://doi.org/10.1007/s10562-007-9352-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-007-9352-x

Keywords

Navigation