Skip to main content
Log in

Catalytic CO oxidation reaction studies on lithographically fabricated platinum nanowire arrays with different oxide supports

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Deep-ultraviolet lithography has been coupled with size-reduction and nanoimprint lithography to create high-density arrays of 20-nm wide platinum nanowires supported on oxide thin films of silica, alumina, zirconia, and ceria. These nanowire arrays have been used as two-dimensional platinum model catalyst systems to study the effects of support on catalytic activity during the catalytic oxidation of carbon monoxide. Strong support dependence is seen for both reaction turnover frequency and the measured activation energy. In addition, the stability of the nanowire arrays under reaction conditions shows support dependence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A.M. Contreras J. Grunes X.-M. Yan A. Liddle G.A. Somorjai (2005) Catal. Lett. 100 115 Occurrence Handle1:CAS:528:DC%2BD2MXivVOntLk%3D Occurrence Handle10.1007/s10562-004-3436-7

    Article  CAS  Google Scholar 

  2. J. Grunes J. Zhu E.A. Anderson G.A. Somorjai (2002) J. Phys. Chem B 106 11463 Occurrence Handle1:CAS:528:DC%2BD38XnvVOisr0%3D Occurrence Handle10.1021/jp021641e

    Article  CAS  Google Scholar 

  3. M. Valden X. Lai D.W. Goodman (1998) Science 281 1647 Occurrence Handle1:CAS:528:DyaK1cXmtVSqu7w%3D Occurrence Handle10.1126/science.281.5383.1647

    Article  CAS  Google Scholar 

  4. J.T. Kummer (1986) J. Phys. Chem. 90 4747 Occurrence Handle1:CAS:528:DyaL28Xltlyrsbs%3D Occurrence Handle10.1021/j100411a008

    Article  CAS  Google Scholar 

  5. C.H.F. Peden D.W. Goodman D.S. Blair P.J. Berlowitz G.B. Fisher S.H. Oh (1563) J. Phys. Chem. 92 1988

    Google Scholar 

  6. N.W. Cant P.C. Hicks B.S. Lennon (1978) J. Catal. 54 372 Occurrence Handle1:CAS:528:DyaE1cXmt1Wmt7o%3D Occurrence Handle10.1016/0021-9517(78)90085-4

    Article  CAS  Google Scholar 

  7. N.W. Cant D.E. Angove (1986) J. Catal. 97 36 Occurrence Handle1:CAS:528:DyaL28XnsFyqsg%3D%3D Occurrence Handle10.1016/0021-9517(86)90034-5

    Article  CAS  Google Scholar 

  8. J.T. Kiss R.D. Gonzalez (1984) J. Phys. Chem. 88 892 Occurrence Handle1:CAS:528:DyaL2cXhtV2ks7g%3D Occurrence Handle10.1021/j150649a014

    Article  CAS  Google Scholar 

  9. J.T. Kiss R.D. Gonzalez (1984) J. Phys. Chem. 88 898 Occurrence Handle1:CAS:528:DyaL2cXhtV2ks7Y%3D Occurrence Handle10.1021/j150649a015

    Article  CAS  Google Scholar 

  10. K.R. McCrea J.S. Parker G.A. Somorjai (2002) J. Phys. Chem. B. 106 10854 Occurrence Handle1:CAS:528:DC%2BD38XnsVWisb0%3D Occurrence Handle10.1021/jp014679k

    Article  CAS  Google Scholar 

  11. B.D. Gates Q. Xu J.C. Love D.B. Wolfe G.M. Whitesides (2004) Annu. Rev. Mater. Res. 34 339 Occurrence Handle1:CAS:528:DC%2BD2cXmvVOju7c%3D Occurrence Handle10.1146/annurev.matsci.34.052803.091100

    Article  CAS  Google Scholar 

  12. S.Y. Chou P.R. Krauss P.J. Renstrom (1996) Science 272 85 Occurrence Handle1:CAS:528:DyaK28XitVKkt7Y%3D

    CAS  Google Scholar 

  13. L.J. Guo (2004) J. Phys. D: Appl. Phys. 37 R123 Occurrence Handle1:CAS:528:DC%2BD2cXltFCmsbY%3D Occurrence Handle10.1088/0022-3727/37/11/R01

    Article  CAS  Google Scholar 

  14. Y.K. Choi J.S. Lee J. Zhu G.A. Somorjai L.P. Lee J. Bokor (2003) J. Vac. Sci. Tech. B 21 2951 Occurrence Handle1:CAS:528:DC%2BD2cXptFOlug%3D%3D Occurrence Handle10.1116/1.1627805

    Article  CAS  Google Scholar 

  15. Y.K. Choi J. Zhu J. Grunes J. Bokor G.A. Somorjai (2003) J. Phys. Chem. B 107 3340 Occurrence Handle1:CAS:528:DC%2BD3sXitF2qtbg%3D Occurrence Handle10.1021/jp0222649

    Article  CAS  Google Scholar 

  16. X.-M. Yan S. Kwon A.M. Contreras J. Bokor G.A. Somorjai (2005) Nano Lett. 4 745 Occurrence Handle10.1021/nl050228q

    Article  Google Scholar 

  17. X.-M. Yan S. Kwon A.M. Contreras M.M. Koebel J. Bokor G.A. Somorjai (2005) Catal. Lett. 105 127 Occurrence Handle1:CAS:528:DC%2BD2MXht1aitbjE Occurrence Handle10.1007/s10562-005-8681-x

    Article  CAS  Google Scholar 

  18. J.C. Schlatter M. Boudart (1972) J. Catal. 24 482 Occurrence Handle1:CAS:528:DyaE38XnslShuw%3D%3D Occurrence Handle10.1016/0021-9517(72)90132-7

    Article  CAS  Google Scholar 

  19. E. Segal R.J. Madon M. Boudart (1978) J. Catal. 52 45 Occurrence Handle1:CAS:528:DyaE1cXhvV2luro%3D Occurrence Handle10.1016/0021-9517(78)90121-5

    Article  CAS  Google Scholar 

  20. X. Su P.S. Cremer Y.R. Shen G.A. Somorjai (1997) J. Am. Chem. Soc. 119 3994 Occurrence Handle1:CAS:528:DyaK2sXisVyjsbg%3D Occurrence Handle10.1021/ja9638723

    Article  CAS  Google Scholar 

  21. R. Yu H. Song X.-F. Zhang P. Yang (2005) J. Phys. Chem. B 109 6940 Occurrence Handle1:CAS:528:DC%2BD2MXislWlt7w%3D Occurrence Handle10.1021/jp050973r

    Article  CAS  Google Scholar 

  22. M.J. Madou (2002) Fundamentals of Microfabrication: The Science of Miniaturization EditionNumber2 CRC Press New York

    Google Scholar 

  23. C. Hardacre R.M. Ormerod R.M. Lambert (1994) J. Phys. Chem 98 10901 Occurrence Handle1:CAS:528:DyaK2cXmtl2hsrc%3D Occurrence Handle10.1021/j100093a036

    Article  CAS  Google Scholar 

  24. U. Oran D. Uner (2004) Appl. Cat. B 54 183 Occurrence Handle1:CAS:528:DC%2BD2cXovVKru70%3D Occurrence Handle10.1016/j.apcatb.2004.06.011

    Article  CAS  Google Scholar 

  25. Y.-F. Yao (1984) J. Catal 87 152 Occurrence Handle1:CAS:528:DyaL2cXhvFOjt78%3D Occurrence Handle10.1016/0021-9517(84)90178-7

    Article  CAS  Google Scholar 

  26. J.Z. Shyu K. Otto W.L.H. Watkins G.W. Graham R.K. Belitz H.S. Gandhi (1988) J. Catal. 114 23 Occurrence Handle1:CAS:528:DyaL1cXmtFKrsrc%3D Occurrence Handle10.1016/0021-9517(88)90005-X

    Article  CAS  Google Scholar 

  27. J.Z. Shyu K. Otto (1989) J. Catal. 115 16 Occurrence Handle1:CAS:528:DyaL1MXhtVanurs%3D Occurrence Handle10.1016/0021-9517(89)90003-1

    Article  CAS  Google Scholar 

  28. R.F. Hicks C. Rigano B. Pang (1990) Catal. Lett. 6 271 Occurrence Handle1:CAS:528:DyaK3MXitlCitrc%3D Occurrence Handle10.1007/BF00763993

    Article  CAS  Google Scholar 

  29. G. Praline B.E. Koel R.L. Hance H.-I. Lee J.M. White (1980) J. Elect. Spect. Rel. Phen. 21 17 Occurrence Handle1:CAS:528:DyaL3cXmtFCksLg%3D Occurrence Handle10.1016/0368-2048(80)85034-1

    Article  CAS  Google Scholar 

  30. L. Osterlund S. Kielbassa C. Werdinius B. Kasemo (2003) J. Catal. 215 94 Occurrence Handle1:CAS:528:DC%2BD3sXjtFeiurk%3D Occurrence Handle10.1016/S0021-9517(02)00086-6

    Article  CAS  Google Scholar 

  31. G.S. Zafiris R.J. Gorte (1993) J. Catal. 140 418 Occurrence Handle1:CAS:528:DyaK3sXltVCisb4%3D Occurrence Handle10.1006/jcat.1993.1095

    Article  CAS  Google Scholar 

  32. J. Libuda M. Baumer H.-J. Freund (1994) J. Vac. Technol. A 12 2259 Occurrence Handle1:CAS:528:DyaK2cXmtFersrc%3D Occurrence Handle10.1116/1.579126

    Article  CAS  Google Scholar 

  33. F. Dong A. Suda T. Tanabe Y. Nagai H. Sobukawa H. Shinjoh M. Sugiura C. Descorme D. Duprez (2004) Catal. Today 93–95 827 Occurrence Handle10.1016/j.cattod.2004.06.076

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Contreras, A.M., Yan, XM., Kwon, S. et al. Catalytic CO oxidation reaction studies on lithographically fabricated platinum nanowire arrays with different oxide supports. Catal Lett 111, 5–13 (2006). https://doi.org/10.1007/s10562-006-0123-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-006-0123-x

Keywords

Navigation