Skip to main content

Advertisement

Log in

Prolyl Hydroxylase Inhibitors: a New Opportunity in Renal and Myocardial Protection

Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Hypoxia, via the activity of hypoxia-inducible factors (HIFs), plays a crucial role in fibrosis, inflammation, and oxidative injury, processes which are associated with progression of cardiovascular and kidney diseases. HIFs are key transcription heterodimers consisting of regulatory α-subunits (HIF-1α, HIF-2α, HIF-3α) and a constitutive β-subunit (HIF-β). The stability of HIFs is regulated by the prolyl hydroxylases (PHDs). Specific PHD inhibitors (PHD-i) are being investigated as a therapeutic approach to modulate the cellular signaling pathways and harness the native protective adaptive responses to hypoxia. Selective inhibition of PHD leads to the stabilization of the HIFs, which is the transcriptional gatekeeper of a multitude of genes involved in angiogenesis, energy metabolism, apoptosis, inflammation, and fibrosis. PHD-i downregulate hepcidin, improve iron absorption, and increase the endogenous production of erythropoietin. Furthermore, this pharmacological group has also been proven to ameliorate ischemic injuries in several organs, opening a new and promising field in cardiovascular research.. In this review, we present the basic and clinical potential of PHD-i treatment in different scenarios, such as ischemic heart disease, cardiac hypertrophy and heart failure, and their interplay with other pharmacological agents with proven cardiovascular benefits, such as sodium-glucose cotransporter 2 (SGLT2) inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Lee JW, Ko J, Ju C, Eltzschig HK. Hypoxia signaling in human diseases and therapeutic targets. Exp Mol Med. 2019;51(6):1–13.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Choudhry H, Harris AL. Advances in hypoxia-inducible factor biology. Cell Metab. 2018;27(2):281–98.

    Article  CAS  PubMed  Google Scholar 

  3. Stauffer ME, Fan T. Prevalence of anemia in chronic kidney disease in the United States. PLoS One. 2014;9(1):e84943.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kassebaum NJ, Jasrasaria R, Naghavi M, Wulf SK, Johns N, Lozano R, et al. A systematic analysis of global anemia burden from 1990 to 2010. Blood. 2014;123(5):615–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Akizawa T, Okumura H, Alexandre AF, Fukushima A, Kiyabu G, Dorey J. Burden of anemia in chronic kidney disease patients in Japan: a literature review. Ther Apher Dial. 2018;22(5):444–56.

    Article  PubMed  Google Scholar 

  6. Locatelli F, Fishbane S, Block GA, Macdougall IC. Targeting hypoxia-inducible factors for the treatment of anemia in chronic kidney disease patients. Am J Nephrol. 2017;45(3):187–99.

    Article  CAS  PubMed  Google Scholar 

  7. Babitt JL, Lin HY. Mechanisms of anemia in CKD. J Am Soc Nephrol. 2012;23(10):1631–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yilmaz MI, Solak Y, Covic A, Goldsmith D, Kanbay M. Renal anemia of inflammation: The name is self-explanatory. Blood Purif. 2011;32(3):220–5.

    Article  PubMed  Google Scholar 

  9. Biggar P, Kim GH. Treatment of renal anemia: Erythropoiesis stimulating agents and beyond. Kidney Res Clin Pract. 2017;36(3):209–23.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Singh AK, Szczech L, Tang KL, Barnhart H, Sapp S, Wolfson M, et al. Correction of anemia with epoetin alfa in chronic kidney disease. N Engl J Med. 2006;355(20):2085–98.

    Article  CAS  PubMed  Google Scholar 

  11. Szczech LA, Barnhart HX, Inrig JK, Reddan DN, Sapp S, Califf RM, et al. Secondary analysis of the CHOIR trial epoetin-alpha dose and achieved hemoglobin outcomes. Kidney Int. 2008;74(6):791–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pfeffer MA, Burdmann EA, Chen CY, Cooper ME, de Zeeuw D, Eckardt KU, et al. A trial of darbepoetin alfa in type 2 diabetes and chronic kidney disease. N Engl J Med. 2009;361(21):2019–32.

    Article  PubMed  Google Scholar 

  13. Macdougall IC, Cooper AC. Hyporesponsiveness to erythropoietic therapy due to chronic inflammation. Eur J Clin Invest. 2005;35(Suppl 3):32–5.

    Article  CAS  PubMed  Google Scholar 

  14. Li ZL, Tu Y, Liu BC. Treatment of renal anemia with roxadustat: Advantages and achievement. Kidney Dis (Basel). 2020;6(2):65–73.

    Article  Google Scholar 

  15. Pergola PE, Spinowitz BS, Hartman CS, Maroni BJ, Haase VH. Vadadustat, a novel oral HIF stabilizer, provides effective anemia treatment in nondialysis-dependent chronic kidney disease. Kidney Int. 2016;90(5):1115–22.

    Article  CAS  PubMed  Google Scholar 

  16. Yan Z, Xu G. A Novel choice to correct inflammation-induced anemia in CKD: Oral hypoxia-inducible factor prolyl hydroxylase inhibitor roxadustat. Front Med (Lausanne). 2020;7:393.

    Article  Google Scholar 

  17. Gupta N, Wish JB. Hypoxia-inducible factor prolyl hydroxylase inhibitors: A potential new treatment for anemia in patients with CKD. Am J Kidney Dis. 2017;69(6):815–26.

    Article  CAS  PubMed  Google Scholar 

  18. Packer M. Mutual antagonism of hypoxia-inducible factor isoforms in cardiac, vascular, and renal disorders. JACC Basic Transl Sci. 2020;5(9):961–8.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Packer M. Mechanisms leading to differential hypoxia-inducible factor signaling in the diabetic kidney: Modulation by SGLT2 inhibitors and hypoxia mimetics. Am J Kidney Dis. 2021;77(2):280–6.

    Article  CAS  PubMed  Google Scholar 

  20. Packer M. Role of impaired nutrient and oxygen deprivation signaling and deficient autophagic flux in diabetic CKD development: Implications for understanding the effects of sodium-glucose cotransporter 2-inhibitors. J Am Soc Nephrol. 2020;31(5):907–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Iyer NV, Kotch LE, Agani F, Leung SW, Laughner E, Wenger RH, et al. Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 alpha. Genes Dev. 1998;12(2):149–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Semenza GL, Wang GL. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol. 1992;12(12):5447–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Kim JW, Tchernyshyov I, Semenza GL, Dang CV. HIF-1-mediated expression of pyruvate dehydrogenase kinase: A metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 2006;3(3):177–85.

    Article  PubMed  Google Scholar 

  24. Loboda A, Jozkowicz A, Dulak J. HIF-1 and HIF-2 transcription factors—Similar but not identical. Mol Cells. 2010;29(5):435–42.

    Article  CAS  PubMed  Google Scholar 

  25. Willam C, Maxwell PH, Nichols L, Lygate C, Tian YM, Bernhardt W, et al. HIF prolyl hydroxylases in the rat; organ distribution and changes in expression following hypoxia and coronary artery ligation. J Mol Cell Cardiol. 2006;41(1):68–77.

    Article  CAS  PubMed  Google Scholar 

  26. Hu CJ, Wang LY, Chodosh LA, Keith B, Simon MC. Differential roles of hypoxia-inducible factor 1alpha (HIF-1alpha) and HIF-2alpha in hypoxic gene regulation. Mol Cell Biol. 2003;23(24):9361–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tanaka T, Nangaku M. Recent advances and clinical application of erythropoietin and erythropoiesis-stimulating agents. Exp Cell Res. 2012;318(9):1068–73.

    Article  CAS  PubMed  Google Scholar 

  28. Ingrassia R, Garavaglia B, Memo M. DMT1 Expression and iron levels at the crossroads between aging and neurodegeneration. Front Neurosci. 2019;13:575.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Covello KL, Kehler J, Yu H, Gordan JD, Arsham AM, Hu CJ, et al. HIF-2alpha regulates Oct-4: Effects of hypoxia on stem cell function, embryonic development, and tumor growth. Genes Dev. 2006;20(5):557–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Koh MY, Powis G. Passing the baton: The HIF switch. Trends Biochem Sci. 2012;37(9):364–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Czibik G. Complex role of the HIF system in cardiovascular biology. J Mol Med (Berl). 2010;88(11):1101–11.

    Article  CAS  Google Scholar 

  32. Siddiq A, Aminova LR, Ratan RR. Hypoxia inducible factor prolyl 4-hydroxylase enzymes: Center stage in the battle against hypoxia, metabolic compromise and oxidative stress. Neurochem Res. 2007;32(4–5):931–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lieb ME, Menzies K, Moschella MC, Ni R, Taubman MB. Mammalian EGLN genes have distinct patterns of mRNA expression and regulation. Biochem Cell Biol. 2002;80(4):421–6.

    Article  CAS  PubMed  Google Scholar 

  34. Appelhoff RJ, Tian YM, Raval RR, Turley H, Harris AL, Pugh CW, et al. Differential function of the prolyl hydroxylases PHD1, PHD2, and PHD3 in the regulation of hypoxia-inducible factor. J Biol Chem. 2004;279(37):38458–65.

    Article  CAS  PubMed  Google Scholar 

  35. Moran AE, Forouzanfar MH, Roth GA, Mensah GA, Ezzati M, Murray CJ, et al. Temporal trends in ischemic heart disease mortality in 21 world regions, 1980 to 2010: The Global Burden of Disease 2010 study. Circulation. 2014;129(14):1483–92.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Severino P, D’Amato A, Pucci M, Infusino F, Adamo F, Birtolo LI, et al. Ischemic heart disease pathophysiology paradigms overview: From plaque activation to microvascular dysfunction. Int J Mol Sci. 2020;21(21).

  37. Schreiber T, Salhofer L, Quinting T, Fandrey J. Things get broken: The hypoxia-inducible factor prolyl hydroxylases in ischemic heart disease. Basic Res Cardiol. 2019;114(3):16.

    Article  PubMed  Google Scholar 

  38. Holscher M, Silter M, Krull S, von Ahlen M, Hesse A, Schwartz P, et al. Cardiomyocyte-specific prolyl-4-hydroxylase domain 2 knock out protects from acute myocardial ischemic injury. J Biol Chem. 2011;286(13):11185–94.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Shyu KG, Wang MT, Wang BW, Chang CC, Leu JG, Kuan P, et al. Intramyocardial injection of naked DNA encoding HIF-1alpha/VP16 hybrid to enhance angiogenesis in an acute myocardial infarction model in the rat. Cardiovasc Res. 2002;54(3):576–83.

    Article  CAS  PubMed  Google Scholar 

  40. Kido M, Du L, Sullivan CC, Li X, Deutsch R, Jamieson SW, et al. Hypoxia-inducible factor 1-alpha reduces infarction and attenuates progression of cardiac dysfunction after myocardial infarction in the mouse. J Am Coll Cardiol. 2005;46(11):2116–24.

    Article  CAS  PubMed  Google Scholar 

  41. Huang B, Qian J, Ma J, Huang Z, Shen Y, Chen X, et al. Myocardial transfection of hypoxia-inducible factor-1alpha and co-transplantation of mesenchymal stem cells enhance cardiac repair in rats with experimental myocardial infarction. Stem Cell Res Ther. 2014;5(1):22.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Eckle T, Kohler D, Lehmann R, El Kasmi K, Eltzschig HK. Hypoxia-inducible factor-1 is central to cardioprotection: A new paradigm for ischemic preconditioning. Circulation. 2008;118(2):166–75.

    Article  CAS  PubMed  Google Scholar 

  43. Zheng J, Chen P, Zhong J, Cheng Y, Chen H, He Y, et al. HIF1alpha in myocardial ischemiareperfusion injury (Review). Mol Med Rep. 2021;23(5).

  44. Cadenas S. ROS and redox signaling in myocardial ischemia-reperfusion injury and cardioprotection. Free Radic Biol Med. 2018;117:76–89.

    Article  CAS  PubMed  Google Scholar 

  45. Deguchi H, Ikeda M, Ide T, Tadokoro T, Ikeda S, Okabe K, et al. Roxadustat markedly reduces myocardial ischemia reperfusion injury in mice. Circ J. 2020;84(6):1028–33.

    Article  CAS  PubMed  Google Scholar 

  46. Adluri RS, Thirunavukkarasu M, Dunna NR, Zhan L, Oriowo B, Takeda K, et al. Disruption of hypoxia-inducible transcription factor-prolyl hydroxylase domain-1 (PHD-1-/-) attenuates ex vivo myocardial ischemia/reperfusion injury through hypoxia-inducible factor-1alpha transcription factor and its target genes in mice. Antioxid Redox Signal. 2011;15(7):1789–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Natarajan R, Salloum FN, Fisher BJ, Ownby ED, Kukreja RC, Fowler AA 3rd. Activation of hypoxia-inducible factor-1 via prolyl-4 hydoxylase-2 gene silencing attenuates acute inflammatory responses in postischemic myocardium. Am J Physiol Heart Circ Physiol. 2007;293(3):H1571–80.

    Article  CAS  PubMed  Google Scholar 

  48. Natarajan R, Salloum FN, Fisher BJ, Kukreja RC, Fowler AA 3rd. Hypoxia inducible factor-1 activation by prolyl 4-hydroxylase-2 gene silencing attenuates myocardial ischemia reperfusion injury. Circ Res. 2006;98(1):133–40.

    Article  CAS  PubMed  Google Scholar 

  49. Bautista L, Castro MJ, Lopez-Barneo J, Castellano A. Hypoxia inducible factor-2alpha stabilization and maxi-K+ channel beta1-subunit gene repression by hypoxia in cardiac myocytes: role in preconditioning. Circ Res. 2009;104(12):1364–72.

    Article  CAS  PubMed  Google Scholar 

  50. Kojima I, Tanaka T, Inagi R, Kato H, Yamashita T, Sakiyama A, et al. Protective role of hypoxia-inducible factor-2alpha against ischemic damage and oxidative stress in the kidney. J Am Soc Nephrol. 2007;18(4):1218–26.

    Article  CAS  PubMed  Google Scholar 

  51. Ralph GS, Parham S, Lee SR, Beard GL, Craigon MH, Ward N, et al. Identification of potential stroke targets by lentiviral vector mediated overexpression of HIF-1 alpha and HIF-2 alpha in a primary neuronal model of hypoxia. J Cereb Blood Flow Metab. 2004;24(2):245–58.

    Article  CAS  PubMed  Google Scholar 

  52. Zhou T, Chuang CC, Zuo L. Molecular Characterization of reactive oxygen species in myocardial ischemia-reperfusion injury. Biomed Res Int. 2015;2015:864946.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Zhou T, Prather ER, Garrison DE, Zuo L. Interplay between ROS and antioxidants during ischemia-reperfusion injuries in cardiac and skeletal muscle. Int J Mol Sci. 2018;19(2).

  54. Oka T, Akazawa H, Naito AT, Komuro I. Angiogenesis and cardiac hypertrophy: Maintenance of cardiac function and causative roles in heart failure. Circ Res. 2014;114(3):565–71.

    Article  CAS  PubMed  Google Scholar 

  55. Sano M, Minamino T, Toko H, Miyauchi H, Orimo M, Qin Y, et al. p53-induced inhibition of Hif-1 causes cardiac dysfunction during pressure overload. Nature. 2007;446(7134):444–8.

    Article  CAS  PubMed  Google Scholar 

  56. Guo J, Mihic A, Wu J, Zhang Y, Singh K, Dhingra S, et al. Canopy 2 attenuates the transition from compensatory hypertrophy to dilated heart failure in hypertrophic cardiomyopathy. Eur Heart J. 2015;36(37):2530–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Holscher M, Schafer K, Krull S, Farhat K, Hesse A, Silter M, et al. Unfavourable consequences of chronic cardiac HIF-1alpha stabilization. Cardiovasc Res. 2012;94(1):77–86.

    Article  PubMed  Google Scholar 

  58. Bekeredjian R, Walton CB, MacCannell KA, Ecker J, Kruse F, Outten JT, et al. Conditional HIF-1alpha expression produces a reversible cardiomyopathy. PLoS One. 2010;5(7):e11693.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Lei L, Mason S, Liu D, Huang Y, Marks C, Hickey R, et al. Hypoxia-inducible factor-dependent degeneration, failure, and malignant transformation of the heart in the absence of the von Hippel-Lindau protein. Mol Cell Biol. 2008;28(11):3790–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zinman B, Lachin JM, Inzucchi SE. Empagliflozin, Cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2016;374(11):1094.

    PubMed  Google Scholar 

  61. Wiviott SD, Raz I, Bonaca MP, Mosenzon O, Kato ET, Cahn A, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2019;380(4):347–57.

    Article  CAS  PubMed  Google Scholar 

  62. Neal B, Perkovic V, Matthews DR. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377(21):2099.

    PubMed  Google Scholar 

  63. Santos-Gallego CG, Requena-Ibanez JA, San Antonio R, Garcia-Ropero A, Ishikawa K, Watanabe S, et al. Empagliflozin ameliorates diastolic dysfunction and left ventricular fibrosis/stiffness in nondiabetic heart failure: A multimodality study. JACC Cardiovasc Imaging. 2021;14(2):393–407.

    Article  PubMed  Google Scholar 

  64. Bessho R, Takiyama Y, Takiyama T, Kitsunai H, Takeda Y, Sakagami H, et al. Hypoxia-inducible factor-1alpha is the therapeutic target of the SGLT2 inhibitor for diabetic nephropathy. Sci Rep. 2019;9(1):14754.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Lassila M, Fukami K, Jandeleit-Dahm K, Semple T, Carmeliet P, Cooper ME, et al. Plasminogen activator inhibitor-1 production is pathogenetic in experimental murine diabetic renal disease. Diabetologia. 2007;50(6):1315–26.

    Article  CAS  PubMed  Google Scholar 

  66. Nayak BK, Shanmugasundaram K, Friedrichs WE, Cavaglierii RC, Patel M, Barnes J, et al. HIF-1 mediates renal fibrosis in OVE26 type 1 diabetic mice. Diabetes. 2016;65(5):1387–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Umino H, Hasegawa K, Minakuchi H, Muraoka H, Kawaguchi T, Kanda T, et al. High basolateral glucose increases sodium-glucose cotransporter 2 and reduces sirtuin-1 in renal tubules through glucose transporter-2 detection. Sci Rep. 2018;8(1):6791.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Cai T, Ke Q, Fang Y, Wen P, Chen H, Yuan Q, et al. Sodium-glucose cotransporter 2 inhibition suppresses HIF-1alpha-mediated metabolic switch from lipid oxidation to glycolysis in kidney tubule cells of diabetic mice. Cell Death Dis. 2020;11(5):390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Eckardt KU, Kurtz A. Regulation of erythropoietin production. Eur J Clin Invest. 2005;35(Suppl 3):13–9.

    Article  CAS  PubMed  Google Scholar 

  70. Olmos G, Munoz-Felix JM, Mora I, Muller AG, Ruiz-Torres MP, Lopez-Novoa JM, et al. Impaired erythropoietin synthesis in chronic kidney disease is caused by alterations in extracellular matrix composition. J Cell Mol Med. 2018;22(1):302–14.

    Article  CAS  PubMed  Google Scholar 

  71. Mazer CD, Hare GMT, Connelly PW, Gilbert RE, Shehata N, Quan A, et al. Effect of empagliflozin on erythropoietin levels, iron stores, and red blood cell morphology in patients with type 2 diabetes mellitus and coronary artery disease. Circulation. 2020;141(8):704–7.

    Article  PubMed  Google Scholar 

Download references

Funding

Juan Antonio Requena-Ibáñez is the recipient of a Fellowship from the Alfonso Martin Escudero Foundation, Madrid (Spain).

Author information

Authors and Affiliations

Authors

Contributions

All authors have read, approved, and contributed equally to the final version of the manuscript.

Corresponding author

Correspondence to Juan José Badimon.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

All authors have read, approved, and contributed equally to the final version of the manuscript.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Juan Antonio Requena-Ibáñez is the recipient of a Fellowship from the Alfonso Martin Escudero Foundation, Madrid (Spain).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Requena-Ibáñez, J.A., Santos-Gallego, C.G., Rodriguez-Cordero, A. et al. Prolyl Hydroxylase Inhibitors: a New Opportunity in Renal and Myocardial Protection. Cardiovasc Drugs Ther 36, 1187–1196 (2022). https://doi.org/10.1007/s10557-021-07257-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-021-07257-0

Keywords

Navigation