Skip to main content
Log in

Attenuation of atrial remodeling by aliskiren via affecting oxidative stress, inflammation and PI3K/Akt signaling pathway

  • Original Article
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Introduction

Atrial fibrillation (AF) is the most common type of arrhythmia. Atrial remodeling is a major factor to the AF substrate. The purpose of the study is to explore whether aliskiren (ALS) has a cardioprotective effect and its potential molecular mechanisms on atrial remodeling.

Methods

In acute experiments, dogs were randomly assigned to Sham, Paced and Paced+aliskiren (10 mg kg−1) (Paced+ALS) groups, with 7 dogs in each group. Rapid atrial pacing (RAP) was maintained at 600 bpm for 2 h for paced and Paced+ALS groups and atrial effective refractory periods (AERPs), inducibility of AF (AFi) and average duration time (ADT) were measured. In chronic experiments, there were 5 groups: Sham, Sham+ALS, Paced, Paced+ALS and Paced+ALS+PI3K antagonist wortmannin (WM) (70 μg kg−1 day−1). RAP at 500 beats/min was maintained for 2 weeks. Inflammation and oxidative stress indicators were measured by ELISA assay, echocardiogram and pathology were used to assess atrial structural remodeling, phosphatidylinositol 3-hydroxy kinase/protein kinase B (PI3K/Akt) signaling pathways were studied by RT-PCR and western blotting to evaluate whether the cardioprotective effect of ALS works through PI3K/Akt signaling pathway.

Results

The electrophysiological changes were observed after 2-h pacing. The AERP shortened with increased AFi and ADT, which was attenuated by ALS (P < 0.05). After pacing for 2 weeks, oxidative stress and inflammation markers in the Paced group were significantly higher than those in the Sham group (P < 0.01) and were reduced by ALS treatment (P < 0.01). The reduced level of antioxidant enzymes caused by RAP was also found to be elevated in ALS-treated group (P < 0.01). The results of pathology and echocardiography showed that RAP can cause atrial enlargement, fibrosis (P < 0.01), and were attenuated in ALS treatment group. The PI3K/Akt signaling pathway were downregulated induced by RAP. ALS could upregulate the PI3K/Akt pathway expression (P < 0.05). Furthermore, the cardioprotective effects in structural remodeling of ALS were suppressed by WM.

Conclusions

ALS may offer cardioprotection in RAP-induced atrial remodeling, which may partly be ascribed to its anti-inflammatory and anti-oxidative stress action and the regulation of PI3K/Akt signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Staszewsky L, Masson S, Barlera S, Disertori M, Boni S, Bertoli D, et al. Cardiac remodeling, circulating biomarkers and clinical events in patients with a history of atrial fibrillation. Data from the GISSI-AF trial. Cardiovasc Drugs Ther. 2015;29(6):551–61.

    Article  CAS  Google Scholar 

  2. Kirchhof P. The future of atrial fibrillation management: integrated care and stratified therapy. Lancet. 2017;390(10105):1873–87.

    Article  Google Scholar 

  3. Dilaveris PE, Kennedy HL. Silent atrial fibrillation: epidemiology, diagnosis, and clinical impact. Clin Cardiol. 2017;40(6):413–8.

    Article  Google Scholar 

  4. Koivumäki JT, Seemann G, Maleckar MM, Tavi P. In silico screening of the key cellular remodeling targets in chronic atrial fibrillation. PLoS Comput Biol. 2014;10(5):e1003620.

    Article  Google Scholar 

  5. Colman MA, Aslanidi OV, Kharche S, Boyett MR, Garratt C, Hancox JC, et al. Pro-arrhythmogenic effects of atrial fibrillation-induced electrical remodelling: insights from the three-dimensional virtual human atria. J Physiol. 2013;591(17):4249–72.

    Article  CAS  Google Scholar 

  6. Kalla M, Sanders P, Kalman JM, Lee G. Radiofrequency catheter ablation for atrial fibrillation: approaches and outcomes. Heart Lung Circ. 2017;26(9):941–9.

    Article  Google Scholar 

  7. Cappato R, Calkins H, Chen SA, Davies W, Iesaka Y, Kalman J, et al. Updated worldwide survey on the methods, efficacy, and safety of catheter ablation for human atrial fibrillation. Circ Arrhythm Electrophysiol. 2010;3(1):32–8.

    Article  Google Scholar 

  8. Chrysostomakis SI, Karalis IK, Simantirakis EN, Koutsopoulos AV, Mavrakis HE, Chlouverakis GI, et al. Angiotensin II type 1 receptor inhibition is associated with reduced tachyarrhythmia-induced ventricular interstitial fibrosis in a goat atrial fibrillation model. Cardiovasc Drugs Ther. 2007;21(5):357–65.

    Article  CAS  Google Scholar 

  9. Nair GM, Nery PB, Redpath CJ, Birnie DH. The role of renin angiotensin system in atrial fibrillation. J Atr Fibrillation. 2014;6(6):972.

    PubMed  PubMed Central  Google Scholar 

  10. Azizi M, Ménard J. Renin inhibitors and cardiovascular and renal protection: an endless quest? Cardiovasc Drugs Ther. 2013;27(2):145–53.

    Article  CAS  Google Scholar 

  11. Brown MJ. Aliskiren. Circulation. 2008;118(7):773–84.

    Article  CAS  Google Scholar 

  12. Zhao Z, Wang X, Li J, Yang W, Cheng L, Chen Y, et al. Protective effects of aliskiren on atrial ionic remodeling in a canine model of rapid atrial pacing. Cardiovasc Drugs Ther. 2014;28(2):137–43.

    Article  CAS  Google Scholar 

  13. Zhao Z, Chen Y, Li W, Wang X, Li J, Yang W, et al. Aliskiren protecting atrial structural remodeling from rapid atrial pacing in a canine model. Naunyn Schmiedeberg's Arch Pharmacol. 2016;389(8):863–71.

    Article  CAS  Google Scholar 

  14. Li J, Solus J, Chen Q, Rho YH, Milne G, Stein CM, et al. Role of inflammation and oxidative stress in atrial fibrillation. Heart Rhythm. 2010;7(4):438–44.

    Article  Google Scholar 

  15. Nattel S, Li D. Ionic remodeling in the heart: pathophysiological significance and new therapeutic opportunities for atrial fibrillation. Circ Res. 2000;87(6):440–7.

    Article  CAS  Google Scholar 

  16. Horio T, Akiyama M, Iwashima Y, Yoshihara F, Nakamura S, Tokudome T, et al. Preventive effect of renin-angiotensin system inhibitors on new-onset atrial fibrillation in hypertensive patients: a propensity score matching analysis. J Hum Hypertens. 2017;31(7):450–6.

    Article  CAS  Google Scholar 

  17. Ellermann C, Mittelstedt A, Wolfes J, Willy K, Leitz P, Reinke F, et al. Action potential triangulation explains acute proarrhythmic effect of aliskiren in a whole-heart model of atrial fibrillation. Cardiovasc Toxicol. 2020;20(1):49–57.

    Article  CAS  Google Scholar 

  18. Mascolo A, Urbanek K, De Angelis A, Sessa M, Scavone C, Berrino L, et al. Angiotensin II and angiotensin 1-7: which is their role in atrial fibrillation? Heart Fail Rev. 2019;2:367–80. https://doi.org/10.1007/s10741-019-09837-7.

    Article  Google Scholar 

  19. Roşianu ŞH, Roşianu AN, Aldica M, Căpâlneanu R, Buzoianu AD. Inflammatory markers in paroxysmal atrial fibrillation and the protective role of renin-angiotensin-aldosterone system inhibitors. Clujul Med. 2013;86(3):217–21.

    PubMed  PubMed Central  Google Scholar 

  20. Karam BS, Chavez-Moreno A, Koh W, Akar JG, Akar FG. Oxidative stress and inflammation as central mediators of atrial fibrillation in obesity and diabetes. Cardiovasc Diabetol. 2017;16(1):120.

    Article  Google Scholar 

  21. Zhao Q, Zhang S, Zhao H, Zhang S, Dai Z, Qian Y, et al. Median nerve stimulation prevents atrial electrical remodelling and inflammation in a canine model with rapid atrial pacing. Europace. 2018;20(4):712–8.

    Article  Google Scholar 

  22. Dai M, Bao M, Zhang Y, Yu L, Cao Q, Tang Y, et al. Low-level carotid baroreflex stimulation suppresses atrial fibrillation by inhibiting left stellate ganglion activity in an acute canine model. Heart Rhythm. 2016;13(11):2203–12.

    Article  Google Scholar 

  23. Chilukoti RK, Giese A, Malenke W, Homuth G, Bukowska A, Goette A, et al. Atrial fibrillation and rapid acute pacing regulate adipocyte/adipositas-related gene expression in the atria. Int J Cardiol. 2015;187:604–13.

    Article  CAS  Google Scholar 

  24. Hu YF, Chen YJ, Lin YJ, Chen SA. Inflammation and the pathogenesis of atrial fibrillation. Nat Rev Cardiol. 2015;12(4):230–43.

    Article  CAS  Google Scholar 

  25. Lazzerini PE, Laghi-Pasini F, Acampa M, Srivastava U, Bertolozzi I, Giabbani B, et al. Systemic inflammation rapidly induces reversible atrial electrical remodeling: the role of interleukin-6-mediated changes in connexin expression. J Am Heart Assoc. 2019;8(16):e011006.

    Article  Google Scholar 

  26. Yao C, Veleva T, Scott L Jr, Cao S, Li L, Chen G, et al. Enhanced cardiomyocyte NLRP3 inflammasome signaling promotes atrial fibrillation. Circulation. 2018;138(20):2227–42.

    Article  CAS  Google Scholar 

  27. Ribeiro Mesquita TR, Zhang R, de Couto G, Valle J, Sanchez L, Rogers RG, et al. Mechanisms of atrial fibrillation in aged rats with heart failure with preserved ejection fraction. Heart Rhythm. 2020. https://doi.org/10.1016/j.hrthm.2020.02.007.

  28. Yoo S, Aistrup G, Shiferaw Y, Ng J, Mohler PJ, Hund TJ, et al. Oxidative stress creates a unique, CaMKII-mediated substrate for atrial fibrillation in heart failure. JCI Insight. 2018;3(21).

  29. Ren X, Wang X, Yuan M, Tian C, Li H, Yang X, et al. Mechanisms and treatments of oxidative stress in atrial fibrillation. Curr Pharm Des. 2018;24(26):3062–71.

    Article  CAS  Google Scholar 

  30. Takei Y, Ichikawa M, Kijima Y. Oral direct renin inhibitor aliskiren reduces in vivo oxidative stress and serum matrix metalloproteinase-2 levels in patients with permanent atrial fibrillation. J Arrhythm. 2015;31(2):76–7.

    Article  Google Scholar 

  31. Nattel S, Harada M. Atrial remodeling and atrial fibrillation: recent advances and translational perspectives. J Am Coll Cardiol. 2014;63(22):2335–45.

    Article  Google Scholar 

  32. Jalloul Y, Refaat MM. IL-6 rapidly induces reversible atrial electrical remodeling by downregulation of cardiac connexins. J Am Heart Assoc. 2019;8(16):e013638.

    Article  Google Scholar 

  33. Bonadei I, Vizzardi E, D'Aloia A, Sciatti E, Raddino R, Metra M. Role of aliskiren on arterial stiffness and endothelial function in patients with primary hypertension. J Clin Hypertens (Greenwich). 2014;16(3):202–6.

    Article  CAS  Google Scholar 

  34. Altarejo Marin T, Machado Bertassoli B, Alves de Siqueira de Carvalho A, Feder D. The use of aliskiren as an antifibrotic drug in experimental models: a systematic review. Drug Dev Res 2019 12. doi: https://doi.org/10.1002/ddr.21610.114, 126.

  35. Chen L, Liu P, Feng X, Ma C. Salidroside suppressing LPS-induced myocardial injury by inhibiting ROS-mediated PI3K/Akt/mTOR pathway in vitro and in vivo. J Cell Mol Med. 2017;21(12):3178–89.

    Article  CAS  Google Scholar 

  36. Ma L, Li XP, Ji HS, Liu YF, Li EZ. Baicalein protects rats with diabetic cardiomyopathy against oxidative stress and inflammation injury via phosphatidylinositol 3-kinase (PI3K)/AKT pathway. Med Sci Monit. 2018;24:5368–75.

    Article  CAS  Google Scholar 

  37. Le Belle JE, Orozco NM, Paucar AA, Saxe JP, Mottahedeh J, Pyle AD, et al. Proliferative neural stem cells have high endogenous ROS levels that regulate self-renewal and neurogenesis in a PI3K/Akt- dependant manner. Cell Stem Cell. 2011;8(1):59–71.

    Article  Google Scholar 

  38. Lu G, Li J, Zhai Y, Li Q, Xie D, Zhang J, et al. Spironolactone suppresses aldosterone-induced Kv1.5 expression by attenuating mineralocorticoid receptor-Nox1/2/4-mediated ROS generation in neonatal rat atrial myocytes. Biochem Biophys Res Commun. 2019;520(2):379–84.

    Article  CAS  Google Scholar 

  39. Takahama H, Minamino T, Hirata A, Ogai A, Asanuma H, Fujita M, et al. Granulocyte colony-stimulating factor mediates cardioprotection against ischemia/reperfusion injury via phosphatidylinositol-3-kinase/Akt pathway in canine hearts. Cardiovasc Drugs Ther. 2006;20(3):159–65.

    Article  CAS  Google Scholar 

  40. Qiu H, Ma J, Wu H, Ding C. DL-3-n-butylphthalide improves ventricular function, and prevents ventricular remodeling and arrhythmias in post-MI rats. Naunyn Schmiedeberg's Arch Pharmacol. 2018;391(6):627–37.

    Article  CAS  Google Scholar 

  41. Ye Y, Qian J, Castillo AC, Perez-Polo JR, Birnbaum Y. Aliskiren and valsartan reduce myocardial AT1 receptor expression and limit myocardial infarct size in diabetic mice. Cardiovasc Drugs Ther. 2011;25(6):505–15.

    Article  CAS  Google Scholar 

  42. Zhao J, Liu E, Li G, Qi L, Li J, Yang W. Effects of the angiotensin-(1-7)/Mas/PI3K/Akt/nitric oxide axis and the possible role of atrial natriuretic peptide in an acute atrial tachycardia canine model. J Renin-Angiotensin-Aldosterone Syst. 2015;16(4):1069–77.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to express their special thanks to Beth Gabris in the Department of Medicine, Heart and Vascular Institute, University of Pittsburgh, USA, for her great help in editing the English language of the manuscript.

Funding

This study was funded by the Program of Natural Science Foundation of China (grant number 81370300), the China Education Ministry Colleges and Universities Special Scientific Research Foundation for Doctoral Advisor Class (grant number 20121202110004), the Tianjin Natural Science Foundation (grant number 17JCQNJC11400) and the Key Laboratory Science Foundation of Second Hospital of Tianjin Medical University (grant number 2017ZDSYS05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangping Li.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All applicable international, national and/or institutional guidelines for the care and use of animals were followed.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Z., Li, R., Wang, X. et al. Attenuation of atrial remodeling by aliskiren via affecting oxidative stress, inflammation and PI3K/Akt signaling pathway. Cardiovasc Drugs Ther 35, 587–598 (2021). https://doi.org/10.1007/s10557-020-07002-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-020-07002-z

Keywords

Navigation