Skip to main content

Advertisement

Log in

Drug-Induced Pulmonary Arterial Hypertension: Mechanisms and Clinical Management

  • Review Article
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Pulmonary arterial hypertension is a rare disease, with drug-induced causes even more uncommon, accounting for only 10% of cases in large registry series. Predisposing factors for drug-induced PAH have not been completely defined. This review summarizes drugs with definite, possible, or likely association to pulmonary hypertension and possible mechanisms involved in the occurrence of pulmonary hypertension. Controversies on mechanisms and on their role in pathophysiology were also shown. The possible synergism between drug abuse and HIV was discussed and the possible interactions of antiretroviral therapy in HIV subjects were analyzed. Furthermore, we reported clinical findings and possible management, specific for each class of drugs, in case of drug-induced PAH. Finally, we summarized into a unified algorithm possible management of drug-induced PAH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Galiè N, Humbert M, Vachiery JL, Gibbs S, Lang I, Torbicki A, et al. 2015 ESC/ERS guidelines for the diagnosis and treatment of pulmonary hypertension: the joint task force for the diagnosis and treatment of pulmonary hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Respir J. 2015;46:903–75.

    PubMed  Google Scholar 

  2. Gurtner HP. Aminorex and pulmonary hypertension. A review Cor Vasa. 1985;27:160–71.

    CAS  PubMed  Google Scholar 

  3. Badesch DB, Raskob GE, Elliott CG, Krichman AM, Farber HW, Frost AE, et al. Pulmonary arterial hypertension: baseline characteristics from the REVEAL Registry. Chest. 2010;137:376–87.

    PubMed  Google Scholar 

  4. Benza RL, Miller DP, Barst RJ, Badesch DB, Frost AE, McGoon MD. An evaluation of long-term survival from time of diagnosis in pulmonary arterial hypertension from the REVEAL registry. Chest. 2012;142:448–56.

    PubMed  Google Scholar 

  5. Simonneau G, Montani D, Celermajer DS, Denton CP, Gatzoulis MA, Krowka M, et al. Haemodynamic definitions and updated clinical classification of pulmonary hypertension. Eur Respir J 2019;53. pii: 1801913.

    CAS  PubMed  Google Scholar 

  6. Vinicio A. de Jesus Perez. Drug-induced pulmonary hypertension: the first 50 years. Advances in Pulmonary Hypertension 2017;15:133–137.

    Google Scholar 

  7. MacLean MMR. The serotonin hypothesis in pulmonary hypertension revisited: targets for novel therapies (2017 Grover Conference Series). Pulm Circ. 2018;8(2):2045894018759125.

    PubMed  Google Scholar 

  8. Hood KY, Mair KM, Harvey AP, Montezano AC, Touyz RM, MacLean MR. Serotonin signaling through the 5-HT1B receptor and NADPH oxidase 1 in pulmonary arterial hypertension. Arterioscler Thromb Vasc Biol. 2017;37:1361–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Maclean MR, Dempsie Y. The serotonin hypothesis of pulmonary hypertension revisited. Adv Exp Med Biol. 2010;661:309–22.

    CAS  PubMed  Google Scholar 

  10. Pleym H, Greiff G, Mjorndal T, Stenseth R, Wahba A, Spigset O. Effect of serotonin reuptake inhibitors on pulmonary hemodynamics in humans. J Clin Med Res. 2011;3:230–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Guignabert C, Izikki M, Tu LI, Li Z, Zadigue P, Barlier-Mur AM, et al. Transgenic mice overexpressing the 5-hydroxytryptamine transporter gene in smooth muscle develop pulmonary hypertension. Circ Res. 2006;98:1323–30.

    CAS  PubMed  Google Scholar 

  12. Adnot S, Houssaini A, Abid S, Marcos E, Amsellem V. Serotonin transporter and serotonin receptors. Handb Exp Pharmacol. 2013;218:365–80.

    CAS  PubMed  Google Scholar 

  13. Dempsie Y, MacLean MMR. Role of the serotonin transporter in pulmonary arterial hypertension. Expert Rev Clin Pharmacol. 2008;1:749–57.

    CAS  PubMed  Google Scholar 

  14. Eddahibi S, Adnot S. Anorexigen-induced pulmonary hypertension and the serotonin (5-HT) hypothesis: lessons for the future in pathogenesis. Respir Res. 2001;3:9.

    PubMed  PubMed Central  Google Scholar 

  15. MacLean MR. Pulmonary hypertension, anorexigens and 5-HT: pharmacological synergism in action? Trends Pharmacol Sci. 1999;20:490–5.

    CAS  PubMed  Google Scholar 

  16. Dempsie Y, Morecroft I, Welsh DJ, MacRitchie NA, Herold N, Loughlin L, et al. Converging evidence in support of the serotonin hypothesis of dexfenfluramine-induced pulmonary hypertension with novel transgenic mice. Circulation. 2008;117:2928–37.

    CAS  PubMed  Google Scholar 

  17. Nagy BM, Nagaraj C, Meinitzer A, Sharma N, Papp R, Foris V, et al. Importance of kynurenine in pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol. 2017;313:L741–51.

    PubMed  Google Scholar 

  18. Chen PI, Cao A, Miyagawa K, Tojais NF, Hennigs JK, Li CG, et al. Amphetamines promote mitochondrial dysfunction and DNA damage in pulmonary hypertension. JCI Insight. 2017;2:e90427.

    PubMed  PubMed Central  Google Scholar 

  19. Ranchoux B, Meloche J, Paulin R, Boucherat O, Provencher S, Bonnet S. DNA damage and pulmonary hypertension. Int J Mol Sci. 2016;17(6).

    PubMed Central  Google Scholar 

  20. Brown JM, Yamamoto BK. Effects of amphetamines on mitochondrial function: role of free radicals and oxidative stress. Pharmacol Ther. 2003;99:45–53.

    CAS  PubMed  Google Scholar 

  21. Tseng YP, Padbury J. Expression of a pulmonary endothelial norepinephrine transporter. J Neural Transm. 1998;105:1187–91.

    CAS  PubMed  Google Scholar 

  22. Salvi SS. Alpha1-adrenergic hypothesis for pulmonary hypertension. Chest. 1999;115:1708–19.

    CAS  PubMed  Google Scholar 

  23. Orcholski ME, Khurshudyan A, Shamskhou EA, Yuan K, Chen IY, Kodani SD, et al. Reduced carboxylesterase 1 is associated with endothelial injury in methamphetamine-induced pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol. 2017;313:L252–66.

    PubMed  PubMed Central  Google Scholar 

  24. Montani D, Seferian A, Savale L, Simonneau G, Humbert M. Drug-induced pulmonary arterial hypertension: a recent outbreak. Eur Respir Rev. 2013;22:244–50.

    PubMed  Google Scholar 

  25. Savale L, Chaumais MC, Cottin V, Bergot E, Frachon I, Prevot G, et al. Pulmonary hypertension associated with benfluorex exposure. Eur Respir J. 2012;40:1164–72.

    PubMed  Google Scholar 

  26. Hendricks-Munoz KD, Gerrets RP, Higgins RD, Munoz JL, Caines VV. Cocaine-stimulated endothelin-1 release is decreased by angiotensin-converting enzyme inhibitors in cultured endothelial cells. Cardiovasc Res. 1996;31:117–23.

    CAS  PubMed  Google Scholar 

  27. Pradhan L, Mondal D, Chandra S, Ali M, Agrawal KC. Molecular analysis of cocaine-induced endothelial dysfunction: role of endothelin-1 and nitric oxide. Cardiovasc Toxicol. 2008;8:161–71.

    CAS  PubMed  Google Scholar 

  28. Robertson CH Jr, Reynolds RC, Wilson JE 3rd. Pulmonary hypertension and foreign body granulomas in intravenous drug abusers. Documentation by cardiac catheterization and lung biopsy. Am J Med. 1976;61:657–64.

    PubMed  Google Scholar 

  29. Tomashefski JF Jr, Hirsch CS. The pulmonary vascular lesions of intravenous drug abuse. Hum Pathol. 1980;11:133–45.

    PubMed  Google Scholar 

  30. Herculiani PP, Pires-Neto RC, Bueno HM, Zorzetto JC, Silva LC, Santos AB, et al. Effects of chronic exposure to crack cocaine on the respiratory tract of mice. Toxicol Pathol. 2009;37:324–32.

    CAS  PubMed  Google Scholar 

  31. Riezzo I, Fiore C, De Carlo D, Pascale N, Neri M, Turillazzi E, et al. Side effects of cocaine abuse: multiorgan toxicity and pathological consequences. Curr Med Chem. 2012;19:5624–46.

    CAS  PubMed  Google Scholar 

  32. Mehta PM, Grainger TA, Lust RM, Movahed A, Terry J, Gilliland MG, et al. Effect of cocaine on left ventricular function. Relation to increased wall stress and persistence after treatment. Circulation. 1995;91:3002–9.

    CAS  PubMed  Google Scholar 

  33. Pitts WR, Vongpatanasin W, Cigarroa JE, Hillis LD, Lange RA. Effects of the intracoronary infusion of cocaine on left ventricular systolic and diastolic function in humans. Circulation. 1998;97:1270–3.

    CAS  PubMed  Google Scholar 

  34. Humbert M, Sitbon O, Simonneau G. Treatment of pulmonary arterial hypertension. N Engl J Med. 2004;351:1425–36.

    CAS  PubMed  Google Scholar 

  35. Opravil M, Pechère M, Speich R, Joller-Jemelka HI, Jenni R, Russi EW, et al. HIV-associated primary pulmonary hypertension. A case control study. Swiss HIV Cohort Study. Am J Respir Crit Care Med. 1997;155:990–5.

    CAS  PubMed  Google Scholar 

  36. Simonneau G, Galiè N, Rubin LJ, Langleben D, Seeger W, Domenighetti G, et al. Clinical classification of pulmonary hypertension. J Am Coll Cardiol. 2004;43:5S–12S.

    PubMed  Google Scholar 

  37. Humbert M, Sitbon O, Chaouat A, Bertocchi M, Habib G, Gressin V, et al. Pulmonary arterial hypertension in France: results from a national registry. Am J Respir Crit Care Med. 2006;173:1023–30.

    PubMed  Google Scholar 

  38. Kanmogne GD, Kennedy RC, Grammas P. Analysis of human lung endothelialcells for susceptibility to HIV type 1 infection, coreceptor expression, and cytotoxicity of gp120 protein. AIDS Res Hum Retrovir. 2001;17:45–53.

    CAS  PubMed  Google Scholar 

  39. Almodovar S, Hsue PY, Morelli J, Huang L, Flores SC; Lung HIV Study. Pulmonary hypertension potential role of HIV-1 nef. HIV Study Proc Am Thorac Soc 2011;8:308–312.

  40. Correale M, Palmiotti GA, Lo Storto MM, Montrone D, Foschino Barbaro MP, Di Biase M, et al. HIV-associated pulmonary arterial hypertension: from bedside to the future. Eur J Clin Investig. 2015;45:515–28.

    Google Scholar 

  41. Dhillon NK, Li F, Xue B, Tawfik O, Morgello S, Buch S, et al. Effect of cocaine on human immunodeficiency virus-mediated pulmonary endothelial and smooth muscle dysfunction. Am J Respir Cell MolBiol. 2001;45:40–52.

    Google Scholar 

  42. Dalvi P, Wang K, Mermis J, Zeng R, Sanderson M, Johnson S, et al. HIV-1/cocaine induced oxidative stress disrupts tight junction protein-1 in human pulmonary microvascular endothelial cells: role of Ras/ERK1/2 pathway. PLoS One. 2014 Jan 7;9:e85246.

    PubMed  PubMed Central  Google Scholar 

  43. Dalvi P, O'Brien-Ladner A, Dhillon NK. Downregulation of bone morphogenetic protein receptor axis during HIV-1 and cocaine-mediated pulmonary smooth muscle hyperplasia: implications for HIV-related pulmonary arterial hypertension. Arterioscler Thromb VascBiol. 2013;33:2585–95.

    CAS  Google Scholar 

  44. Dalvi P, Spikes L, Allen J, Gupta VG, Sharma H, Gillcrist M, et al. Effect of cocaine on pulmonary vascular remodeling and hemodynamics in human immunodeficiency virus-transgenic rats. Am J Respir Cell Mol Biol. 2016;55:201–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Spikes L, Dalvi P, Tawfik O, Gu H, Voelkel NF, Cheney P, et al. Enhanced pulmonary arteriopathy in simian immunodeficiency virus-infected macaques exposed to morphine. Am J Respir Crit Care Med. 2012;185:1235–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Dalvi P, Sharma H, Chinnappan M, Sanderson M, Allen J, Zeng R, et al. Enhanced autophagy in pulmonary endothelial cells on exposure to HIV-Tat and morphine: role in HIV-related pulmonary arterial hypertension. Autophagy. 2016;12:2420–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Martinez EA, Hartsfield SM, Melendez LD, Matthews NS, Slater MR. Cardiovascular effects of buprenorphine in anesthetized dogs. Am J Vet Res. 1997;58:1280–4.

    CAS  PubMed  Google Scholar 

  48. Sganzerla P, Cipolla C, Della Bella P, Fabbiocchi F, Grazi S, Rimondini A, et al. Analgesic and hemodynamic effects of buprenorphine in acute infarction of the heart. Jpn Heart J. 1987;28:63–71.

    CAS  PubMed  Google Scholar 

  49. Ho RC, Ho EC, Tan CH, Mak A. Pulmonary hypertension in first episode infective endocarditis among intravenous buprenorphine users: case report. Am J Drug Alcohol Abuse. 2009;35:199–202.

    PubMed  Google Scholar 

  50. Rich S, Rubin L, Walker AM, Schneeweiss S, Abenhaim L. Anorexigens and pulmonary hypertension in the United States: results from the surveillance of North American pulmonary hypertension. Chest. 2000;117:870–4.

    CAS  PubMed  Google Scholar 

  51. Barst RJ, Abenhaim L. Fatal pulmonary arterial hypertension associated with phenylpropanolamine exposure. Heart. 2004;90:e42.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Ledinek AH, Jazbec SS, Drinovec I, Rot U. Pulmonary arterial hypertension associated with interferon beta treatment for multiple sclerosis: a case report. Mult Scler. 2009;15:885–6.

    CAS  PubMed  Google Scholar 

  53. Modrego PJ, Gazulla J. Arterial hypertension induced by interferon beta 1b in a patient with multiple sclerosis. Mult Scler. 2012;18:1655–6.

    CAS  PubMed  Google Scholar 

  54. Fok A, Williams T, McLean CA, Butler E. Interferon beta-1a long-term therapy related to pulmonary arterial hypertension in multiple sclerosis patients. Mult Scler. 2016;22:1495–8.

    CAS  PubMed  Google Scholar 

  55. Savale L, Chaumais MC, O'Connell C, Humbert M, Sitbon O. Interferon-induced pulmonary hypertension: an update. Curr Opin Pulm Med. 2016;22:415–20.

    CAS  PubMed  Google Scholar 

  56. George PM, Cunningham ME, Galloway-Phillipps N, Badiger R, Alazawi W, Foster GR, et al. Endothelin-1 as a mediator and potential biomarker for interferon induced pulmonary toxicity. Pulm Circ. 2012;2:501–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Gibbons E, Promislow S, Davies RA, Chandy G, Stewart DJ, Vladamir CD, et al. Reversible pulmonary arterial hypertension associated with interferon-beta treatment for multiple sclerosis. Can Respir J. 2015;22:263–5.

    PubMed  PubMed Central  Google Scholar 

  58. George PM, Oliver E, Dorfmuller P, Dubois OD, Reed DM, Kirkby NS, et al. Evidence for the involvement of type I interferon in pulmonary arterial hypertension. Circ Res. 2014;114:677–88.

    CAS  PubMed  Google Scholar 

  59. Tsuchiya H, Kioka H, Ozu K, Ohtani T, Yamaguchi O, Yazaki Y, et al. Interferon therapy exacerbated pulmonary hypertension in a patient with hepatitis C virus infection: pathogenic interplay among multiple risk factors. Intern Med. 2017;56:1061–5.

    PubMed  PubMed Central  Google Scholar 

  60. Nakano M, Fujii T, Hashimoto M, Yukawa N, Yoshifuji H, Ohmura K, et al. Type I interferon induces CX3CL1 (fractalkine) and CCL5 (RANTES) production in human pulmonary vascular endothelial cells. Clin Exp Immunol. 2012;170:94–100.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Papani R, Duarte AG, Lin YL, Kuo YF, Sharma G. Pulmonary arterial hypertension associated with interferon therapy: a population-based study. Multidisciplinary Respiratory Medicine. 2017;12:1.

    PubMed  PubMed Central  Google Scholar 

  62. Jose A, Rafei H, Ahari J. Combination targeted pulmonary hypertension therapy in the resolution of Dasatinib-associated pulmonary arterial hypertension. Pulm Circ. 2017;7:803–7.

    PubMed  PubMed Central  Google Scholar 

  63. Riou M, Seferian A, Savale L, Chaumais MC, Guignabert C, Canuet M, et al. Deterioration of pulmonary hypertension and pleural effusion with bosutinib following dasatinib lung toxicity. Eur Respir J. 2016;48:1517–9.

    PubMed  Google Scholar 

  64. Moslehi JJ, Deininger M. Tyrosine kinase inhibitor–associated cardiovascular toxicity in chronic myeloid leukemia. J Clin Oncol. 2015;35:4210–8.

    Google Scholar 

  65. Minami M, Arita T, Iwasaki H, Muta T, Aoki T, Aoki K, et al. Comparative analysis of pulmonary hypertension in patients treated with imatinib, nilotinib and dasatinib. Br J Haematol. 2017;177:578–87.

    CAS  PubMed  Google Scholar 

  66. Hickey PM, Thompson AAR, Charalampopoulos A, Elliot CA, Hamilton N, Kiely DG, et al. Bosutinib therapy resulting in severe deterioration of pre-existing pulmonary arterial hypertension. Eur Respir J. 2016;48:1514–6.

    PubMed  Google Scholar 

  67. Groeneveldt JA, Gans SJ, Bogaard HJ, Vonk-Noordegraaf A. Dasatinib-induced pulmonary arterial hypertension unresponsive to PDE-5 inhibition. Eur Respir J. 2013;42:869–70.

    PubMed  Google Scholar 

  68. Pullamsetti SS, Berghausen EM, Dabral S, Tretyn A, Butrous E, Savai R, et al. Role of Src tyrosine kinases in experimental pulmonary hypertension. Arterioscler Thromb Vasc Biol. 2012;32:1354–65.

    CAS  PubMed  Google Scholar 

  69. Ryan JJ. Tyrosine kinase inhibitors in pulmonary vascular disease. JACC: Basic to Translational Science. 2016;1:684–6.

    PubMed  Google Scholar 

  70. Baumgart B, Guha M, Hennan J, Li J, Woicke J, Simic D, et al. In vitro and in vivo evaluation of dasatinib and imatinib on physiological parameters of pulmonary arterial hypertension. Cancer Chemother Pharmacol. 2017;79:711–23.

    CAS  PubMed  Google Scholar 

  71. Guignabert C, Phan C, Seferian A, Huertas A, Tu L, Thuillet R, et al. Dasatinib induces lung vascular toxicity and predisposes to pulmonary hypertension. J Clin Invest. 2016;126:3207–18.

    PubMed  PubMed Central  Google Scholar 

  72. Phan C, Jutant EM, Tu L, Thuillet R, Seferian A, Montani D, et al. Dasatinib increases endothelial permeability leading to pleural effusion. Eur Respir J. 2018;51. pii: 1701096.

    PubMed  Google Scholar 

  73. Özgür Yurttaş N, Eşkazan AE. Dasatinib-induced pulmonary arterial hypertension. Br J Clin Pharmacol. 2018;84:835–45.

    PubMed  PubMed Central  Google Scholar 

  74. Cornet L, Khouri C, Roustit M, Guignabert C, Chaumais MC, Humbert M, et al. Pulmonary arterial hypertension associated with protein kinase inhibitors: a pharmacovigilance-pharmacodynamic study. Eur Respir J. 2019;53. pii: 1802472.

    CAS  PubMed  Google Scholar 

  75. Renard S, Borentain P, Salaun E, Benhaourech S, Maille B, Darque A, et al. Severe pulmonary arterial hypertension in patients treated for hepatitis C with Sofosbuvir. Chest. 2016;149:e69–73.

    PubMed  Google Scholar 

  76. Garg L, Akbar G, Agrawal S, Agarwal M, Khaddour L, Handa R, et al. Drug-induced pulmonary arterial hypertension: a review. Heart Fail Rev. 2017;22:289–97.

    CAS  PubMed  Google Scholar 

  77. Rahbar R, Shapshay SM, Healy GB. Mitomycin: effects on laryngeal and tracheal stenosis, benefits, and complications. Ann Otol Rhinol Laryngol. 2001;110:1–6.

    CAS  PubMed  Google Scholar 

  78. Hoorn CM, Wagner JG, Petry TW, Roth RA. Toxicity of mitomycin C toward cultured pulmonary artery endothelium. Toxicol Appl Pharmacol. 1995;130:87–94.

    CAS  PubMed  Google Scholar 

  79. Joselson R, Warnock M. Pulmonary veno-occlusive disease after chemotherapy. Hum Pathol. 1983;14:88–91.

    CAS  PubMed  Google Scholar 

  80. Wu KY, Wang HZ, Hong SJ. Mechanism of mitomycin-induced apoptosis in cultured corneal endothelial cells. Mol Vis. 2008;14:1705–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Su C, Sui T, Zhang X, Zhang H, Cao X. Effect of topical application of mitomycin-C on wound healing in a postlaminectomy rat model: an experimental study. Eur J Pharmacol. 2012;674:7–12.

    CAS  PubMed  Google Scholar 

  82. Montani D, Lau EM, Descatha A, Jaïs X, Savale L, Andujar P, et al. Occupational exposure to organic solvents: a risk factor for pulmonary veno-occlusive disease. Eur Respir J. 2015;46:1721–31.

    CAS  PubMed  Google Scholar 

  83. Dhalla IA, Juurlink DN, Gomes T, Granton JT, Zheng H, Mamdani MM. Selective serotonin reuptake inhibitors and pulmonary arterial hypertension: a case-control study. Chest. 2012;141:348–53.

    PubMed  Google Scholar 

  84. Grigoriadis S, Vonderporten EH, Mamisashvili L, Tomlinson G, Dennis CL, Koren G, et al. Prenatal exposure to antidepressants and persistent pulmonary hypertension of the newborn: systematic review and meta-analysis. BMJ. 2014;348:f6932.

    PubMed  PubMed Central  Google Scholar 

  85. Sadoughi A, Roberts KE, Preston IR, Lai GP, McCollister DH, Farber HW, et al. Use of selective serotonin reuptake inhibitors and outcomes in pulmonary arterial hypertension. Chest. 2013;144:531–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Jayarajan RN, Shere S, Sutar R, Karmani S, Reddi VS, Kesavan M, et al. Fluoxetine-induced pulmonary hypertension in a patient with schizophrenia. J Neuropsychiatry Clin Neurosci. 2014;26:E12–3.

    PubMed  Google Scholar 

  87. Souza R, Humbert M, Sztrymf B, Jaïs X, Yaïci A, Le Pavec J, et al. Pulmonary arterial hypertension associated with fenfluramine exposure: report of 109 cases. Eur Respir J. 2008;31:343–8.

    CAS  PubMed  Google Scholar 

  88. Baufreton C, Bruneval P, Rousselet MC, Ennezat PV, Fouquet O, Giraud R, et al. Fatal postoperative systemic pulmonary hypertension in benfluorex-induced valvular heart disease surgery: a case report. Medicine. 2017;96:e4985.

    PubMed  PubMed Central  Google Scholar 

  89. Szymanski C, Andréjak M, Peltier M, Maréchaux S, Tribouilloy C. Adverse effects of benfluorex on heart valves and pulmonary circulation. Pharmacoepidemiol Drug Saf. 2014;23:679–86.

    PubMed  Google Scholar 

  90. Frank H, Mlczoch J, Huber K, Schuster E, Gurtner HP, Kneussl M. The effect of anticoagulant therapy in primary and anorectic drug-induced pulmonary hypertension. Chest. 1997;112:714–21.

    CAS  PubMed  Google Scholar 

  91. Humbert M, Sitbon O, Chaouat A, Bertocchi M, Habib G, Gressin V, et al. Survival in patients with idiopathic, familial, and anorexigen-associated pulmonary arterial hypertension in the modern management era. Circulation. 2010;122:156–63.

    PubMed  Google Scholar 

  92. Bergot E, Sitbon O, Cottin V, Prévot G, Canuet M, Bourdin A, et al. Current epoprostenol use in patients with severe idiopathic, heritable or anorexigen-associated pulmonary arterial hypertension: data from the French pulmonary hypertension registry. Int J Cardiol. 2014;172:561–7.

    PubMed  Google Scholar 

  93. Ceylan ME, Alpsan MH. Pulmonary hypertension during lithium therapy: clinical case study. Psychopharmacol Bull. 2007;40:110–2.

    CAS  PubMed  Google Scholar 

  94. Zamanian RT, Hedlin H, Greuenwald P, Wilson DM, Segal JI, Jorden M, et al. Features and outcomes of methamphetamine-associated pulmonary arterial hypertension. Am J Respir Crit Care Med. 2018;197:788–800.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Shah NP, Wallis N, Farber HW, Mauro MJ, Wolf RA, Mattei D, et al. Clinical features of pulmonary arterial hypertension in patients receiving dasatinib. Am J Hematol. 2015;90:1060–4.

    CAS  PubMed  Google Scholar 

  96. García-Gutiérrez V, Maestro B, Martinez-Trillo A, Lopez Lorenzo JL, Martin Mateos ML, Alvarez A, et al. Bosutinib appears to be safe, with low cross intolerance, in patients treated in 4th line. Results of the Spanish Compassionate Use Program Blood. 2014;124:5523.

    Google Scholar 

  97. Shepherd J. FDA drug safety podcast for healthcare professionals: Sprycel (dasatinib) and risk of pulmonary arterial hypertension. Available at: http://www.fda.gov/Drugs/DrugSafety/ DrugSafetyPodcasts/ucm275517.htm ().

  98. El-Dabh A, Acharya D. Pulmonary hypertension with dasatinib and other tyrosine kinase inhibitors. Pulm Circ. 2019 Jul;5:2045894019865704.

    Google Scholar 

  99. Edahiro Y, Takaku T, Konishi H, Tsukune Y, Fujioka I, Takasu K, et al. Chronic myeloid leukemia complicated by pulmonary hypertension during dasatinib therapy: a single-center retrospective study. Rinsho Ketsueki. 2017;58:2213–8.

    PubMed  Google Scholar 

  100. Weatherald J, Chaumais M, Savale L, Jaïs X, Seferian A, Canuet M, et al. Long-term outcomes of dasatinib-induced pulmonary arterial hypertension: a population-based study. Eur Respir J. 2017;50(1).

    PubMed  Google Scholar 

  101. Orlandi EM, Rocca B, Pazzano AS, Ghio S. Reversible pulmonary arterial hypertension likely related to long-term, low-dose dasatinib treatment for chronic myeloid leukaemia. Leuk Res. 2012;36:e4–6.

    PubMed  Google Scholar 

  102. Groeneveldt JA, Gans SJ, Bogaard HJ, Vonk-Noordegraaf A. Dasatinib-induced pulmonary arterial hypertension unresponsive to PDE-5 inhibition. Eur Respir J. 2013;42:869–70.

    PubMed  Google Scholar 

  103. Weatherald J, Chaumais MC, Montani D. Pulmonary arterial hypertension induced by tyrosine kinase inhibitors. Curr Opin Pulm Med. 2017;23:392–7.

    CAS  PubMed  Google Scholar 

  104. Nishimori M, Honjo T, Kaihotsu K, Sone N, Yoshikawa S, Imanishi J, et al. Dasatinib-induced pulmonary arterial hypertension treated with upfront combination therapy. Case Rep Cardiol. 2018;2018:3895197.

    PubMed  PubMed Central  Google Scholar 

  105. Zakrzewski D, Seferynska I, Warzocha K, Hryniewiecki T. Elevation of pulmonary artery pressure as a complication of nilotinib therapy for chronic myeloid leukemia. Int J Hematol. 2012;96:132–5.

    PubMed  Google Scholar 

  106. Quilot FM, Georges M, Favrolt N, Beltramo G, Foignot C, Grandvuillemin A, et al. Pulmonary hypertension associated with ponatinib therapy. Eur Respir J. 2016;47:676–9.

    CAS  PubMed  Google Scholar 

  107. Krishnan U, Mark TM, Niesvizky R, Sobol I. Pulmonary hypertension complicating multiple myeloma. Pulm Circ. 2015;5:590–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Wang X, Ibrahim YF, Das D, Zungu-Edmondson M, Shults NV, Suzuki YJ. Carfilzomib reverses pulmonary arterial hypertension. Cardiovasc Res. 2016;110:188–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Tabarroki A, Lindner DJ, Visconte V, Zhang L, Rogers HJ, Parker Y, et al. Ruxolitinib leads to improvement of pulmonary hypertension in patients with myelofibrosis. Leukemia. 2014;28:1486–93.

    CAS  PubMed  Google Scholar 

  110. Low AT, Howard L, Harrison C, Tulloh RM. Pulmonary arterial hypertension exacerbated by ruxolitinib. Haematologica. 2015;100:e244–5.

    PubMed  PubMed Central  Google Scholar 

  111. Govern EM, Judge EP, Kavanagh E, Gaine S, Lynch T. Interferon beta related pulmonary arterial hypertension; an emerging worrying entity? Mult Scler Relat Disord. 2015;4:284–6.

    PubMed  Google Scholar 

  112. Savale L, Sattler C, Günther S, Montani D, Chaumais MC, Perrin S, et al. Pulmonary arterial hypertension in patients treated with interferon. Eur Respir J. 2014;44:1627–34.

    CAS  PubMed  Google Scholar 

  113. Ledinek AH, Jazbec SS, Drinovec I, Rot U. Pulmonary arterial hypertension associated with interferon beta treatment for multiple sclerosis: a case report. Mult Scler. 2009;15:885–6.

    CAS  PubMed  Google Scholar 

  114. George PM, Badiger R, Alazawi W, Foster GR, Mitchell JA. Pharmacology and therapeutic potential of interferons. Pharm Ther. 2012;135:44–53.

    CAS  Google Scholar 

  115. Dhillon S, Kaker A, Dosanjh A, Japra D, Van Thiel DH. Irreversible pulmonary hypertension associated with the use of interferon alpha for chronic hepatitis C. Dig Dis Sci. 2010;55:1785–90.

    PubMed  PubMed Central  Google Scholar 

  116. Caravita S, Secchi MB, Wu SC, Pierini S, Paggi A. Sildenafil therapy for interferon-b-1a-induced pulmonary arterial hypertension: a case report. Cardiology. 2011;120:187–9.

    CAS  PubMed  Google Scholar 

  117. Savale L, Chaumais MC, Montani D, Jaïs X, Hezode C, Antonini TM, et al. Direct-acting antiviral medications for hepatitis C virus infection and pulmonary arterial hypertension. Chest. 2016;150:256–8.

    PubMed  Google Scholar 

  118. Traclet J, Khouatra C, Piégay F, Turquier S, Zeghmar S, Mornex JF, et al. Pulmonary arterial hypertension in heroin users. J Heart Lung Transplant. 2016;35:932–4.

    PubMed  Google Scholar 

  119. Collazos J, Martínez E, Fernández A, Mayo J. Acute, reversible pulmonary hypertension associated with cocaine use. Respir Med. 1996;90:171–4.

    CAS  PubMed  Google Scholar 

  120. Meyer LC, Hetem RS, Mitchell D, Fuller A. Hypoxia following etorphine administration in goats (Capra hircus) results more from pulmonary hypertension than from hypoventilation. BMC Vet Res. 2015;11:18.

    PubMed  PubMed Central  Google Scholar 

  121. Harter ZJ, Agarwal S, Dalvi P, Voelkel NF, Dhillon NK. Drug abuse and HIV-related pulmonary hypertension: double hit injury. AIDS. 2018;32:2651–67.

    PubMed  PubMed Central  Google Scholar 

  122. Degano B, Guillaume M, Savale L, Montani D, Jaïs X, Yaici A, et al. HIV-associated pulmonary arterial hypertension: survival and prognostic factors in the modern therapeutic era. AIDS. 2010;24:67–75.

    PubMed  Google Scholar 

  123. Perros F, Günther S, Ranchoux B, Godinas L, Antigny F, Chaumais MC, et al. Mitomycin-induced pulmonary veno-occlusive disease: evidence from human disease and animal models. Circulation. 2015;132:834–47.

    CAS  PubMed  Google Scholar 

  124. Koyama M, Yano T, Kikuchi K, Mizuno M, Nagano N, Hashimoto A, et al. Favorable response to an endothelin receptor antagonist in mitomycin-induced pulmonary veno-occlusive disease with pulmonary capillary hemangiomatosis. Int J Cardiol. 2016;212:245–7.

    PubMed  Google Scholar 

  125. Botros L, Van Nieuw Amerongen GP, Vonk Noordegraaf A, Bogaard HJ. Recovery from mitomycin-induced pulmonary arterial hypertension. Ann Am Thorac Soc. 2014;11:468–70.

    PubMed  Google Scholar 

  126. Huertas A, Girerd B, Dorfmuller P, O'Callaghan D, Humbert M, Montani D. Pulmonary veno-occlusive disease: advances in clinical management and treatments. Expert Rev Respir Med. 2011;5:217–29.

    CAS  PubMed  Google Scholar 

  127. Younis TH, Alam A, Paplham P, Spangenthal E, McCarthy P. Reversible pulmonary hypertension and thalidomide therapy for multiple myeloma. Br J Haematol. 2003;121:191–2.

    PubMed  Google Scholar 

  128. Ocal A, Kiriş I, Erdinç M, Peker O, Yavuz T, Ibrişim E. Efficiency of prostacyclin in the treatment of protamine-mediated right ventricular failure and acute pulmonary hypertension. Tohoku J Exp Med. 2005;207:51–8.

    CAS  PubMed  Google Scholar 

  129. Jerath A, Srinivas C, Vegas A, Brister S. The successful management of severe protamine-induced pulmonary hypertension using inhaled prostacyclin. Anesth Analg. 2010;110:365–9.

    PubMed  Google Scholar 

  130. Guan Z, Shen X, Zhang YJ, Li XG, Gao YF, Tan J, et al. Use of epoprostenol to treat severe pulmonary vasoconstriction induced by protamine in cardiac surgery. Medicine. 2018;97:e10908.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Ribeiro Baptista B, Petitpain N, Gomez E, Yelehé-Okouma M, Valentin S, Guillaumot A, et al. Pulmonary arterial hypertension in patient treated for multiple sclerosis with 4-aminopyridine. Fundam Clin Pharmacol. 2019;33:127–9.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natale Daniele Brunetti.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Correale, M., Tricarico, L., Grazioli, D. et al. Drug-Induced Pulmonary Arterial Hypertension: Mechanisms and Clinical Management. Cardiovasc Drugs Ther 33, 725–738 (2019). https://doi.org/10.1007/s10557-019-06920-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-019-06920-x

Keywords

Navigation