Skip to main content
Log in

Epicardial adipose tissue: relationship between measurement location and metabolic syndrome

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Epicardial adipose tissue (EAT) is a contributing factor of metabolic syndrome (MS) and coronary artery disease (CAD). However, it is still unclear which measurement location of EAT area best reflects its cardiometabolic risk. The purpose of our study was to investigate the distribution of EAT and its relationship to the total EAT volume and MS. To assess volume and cross-sectional areas of EAT, coronary CT angiography were obtained in 256 asymptomatic subjects. The EAT areas within the threshold range of −190 to −30 Hounsfield units were measured at six representative slices. Correlations between single slice EAT areas and total EAT volumes were high across all measurement locations (correlation coefficient r > 0.80). The receiver–operator characteristic curves demonstrated EAT area at left main coronary artery (LMCA) was well discriminative for MS (AUC 0.82, p < 0.001) and CAD (AUC 0.76, p < 0.001). EAT areas across all measurement locations were significantly increased linearly with increasing number of MS components. EAT areas were significantly associated with MS at all measurement locations; the highest odds ratio (OR) between EAT area and MS was at the LMCA level (OR 5.86, p < 0.001). The OR between EAT area and coronary artery calcium was also significant in LMCA locations (OR 1.56, p = 0.042). We demonstrated that the single-slice EAT area measurement is a simple and reliable method compared with time-consuming volumetric measurements. The EAT area at LMCA level was the best single slice representing the risk of metabolic syndrome and coronary atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lakka HM, Laaksonen DE, Lakka TA, Niskanen LK, Kumpusalo E, Tuomilehto J, Salonen JT (2002) The metabolic syndrome and total and cardiovascular disease mortality in middle-aged men. JAMA 288:2709–2716

    Article  PubMed  Google Scholar 

  2. Trevisan M, Liu J, Bahsas FB, Menotti A (1998) Syndrome X and mortality: a population-based study. Risk Factor and Life Expectancy Research Group. Am J Epidemiol 148:958–966

    Article  CAS  PubMed  Google Scholar 

  3. Després JP, Lemieux I (2006) Abdominal obesity and metabolic syndrome. Nature 444:881–887

    Article  PubMed  Google Scholar 

  4. Carr DB, Utzschneider KM, Hull RL, Kodama K, Retzlaff BM, Brunzell JD, Shofer JB, Fish BE, Knopp RH, Kahn SE (2004) Intra-abdominal fat is a major determinant of the National Cholesterol Education Program Adult Treatment Panel III criteria for the metabolic syndrome. Diabetes 53:2087–2094

    Article  CAS  PubMed  Google Scholar 

  5. Rosito GA, Massaro JM, Hoffmann U, Ruberg FL, Mahabadi AA, Vasan RS, O’Donnell CJ, Fox CS (2008) Pericardial fat, visceral abdominal fat, cardiovascular disease risk factors, and vascular calcification in a community-based sample: the Framingham Heart Study. Circulation 117:605–613

    Article  PubMed  Google Scholar 

  6. Iacobellis G, Willens HJ (2009) Echocardiographic epicardial fat: a review of research and clinical applications. J Am Soc Echocardiogr 22:1311–1319; quiz 1417–1418

    Google Scholar 

  7. Sacks HS, Fain JN (2007) Human epicardial adipose tissue: a review. Am Heart J 153:907–917

    Article  CAS  PubMed  Google Scholar 

  8. Sengul C, Ozveren O (2013) Epicardial adipose tissue: a review of physiology, pathophysiology, and clinical applications. Anadolu Kardiyol Derg 13(3):261–265

    PubMed  Google Scholar 

  9. Yerramasu A, Dey D, Venuraju S, Anand DV, Atwal S, Corder R, Berman DS, Lahiri A (2012) Increased volume of epicardial fat is an independent risk factor for accelerated progression of sub-clinical coronary atherosclerosis. Atherosclerosis 220:223–230

    Article  CAS  PubMed  Google Scholar 

  10. Nakazato R, Rajani R, Cheng VY, Shmilovich H, Nakanishi R, Otaki Y, Gransar H, Slomka PJ, Hayes SW, Thomson LE, Friedman JD, Wong ND, Shaw LJ, Budoff M, Rozanski A, Berman DS, Dey D (2012) Weight change modulates epicardial fat burden: a 4-year serial study with non-contrast computed tomography. Atherosclerosis 220:139–144

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Dey D, Wong ND, Tamarappoo B, Nakazato R, Gransar H, Cheng VY, Ramesh A, Kakadiaris I, Germano G, Slomka PJ, Berman DS (2010) Computer-aided non-contrast CT-based quantification of pericardial and thoracic fat and their associations with coronary calcium and Metabolic syndrome. Atherosclerosis 209:136–141

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Yong HS, Kim EJ, Seo HS, Kang EY, Kim YK, Woo OH, Han H (2010) Pericardial fat is more abundant in patients with coronary atherosclerosis and even in the non-obese patients: evaluation with cardiac CT angiography. Int J Cardiovasc Imaging 26(Suppl 1):53–62

    Article  PubMed  Google Scholar 

  13. Oyama N, Goto D, Ito YM, Ishimori N, Mimura R, Furumoto T, Kato F, Tsutsui H, Tamaki N, Terae S, Shirato H (2011) Single-slice epicardial fat area measurement: do we need to measure the total epicardial fat volume? Jpn J Radiol 29:104–109

    Article  PubMed  Google Scholar 

  14. Gorter PM, van Lindert AS, de Vos AM, Meijs MF, van der Graaf Y, Doevendans PA, Prokop M, Visseren FL (2008) Quantification of epicardial and peri-coronary fat using cardiac computed tomography; reproducibility and relation with obesity and metabolic syndrome in patients suspected of coronary artery disease. Atherosclerosis 197:896–903

    Article  CAS  PubMed  Google Scholar 

  15. Sironi AM, Petz R, De Marchi D, Buzzigoli E, Ciociaro D, Positano V, Lombardi M, Ferrannini E, Gastaldelli A (2012) Impact of increased visceral and cardiac fat on cardiometabolic risk and disease. Diabet Med 29:622–627

    Article  CAS  PubMed  Google Scholar 

  16. Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA, Gordon DJ, Krauss RM, Savage PJ, Smith SC Jr, Spertus JA, Costa F (2005) Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation 112:2735–2752

    Article  PubMed  Google Scholar 

  17. Lee SY, Park HS, Kim DJ, Han JH, Kim SM, Cho GJ, Kim DY, Kwon HS, Kim SR, Lee CB, Oh SJ, Park CY, Yoo HJ (2007) Appropriate waist circumference cutoff points for central obesity in Korean adults. Diabetes Res Clin Pract 75:72–80

    Article  PubMed  Google Scholar 

  18. Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte M Jr, Detrano R (1990) Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol 15:827–832

    Article  CAS  PubMed  Google Scholar 

  19. Mazurek T, Zhang L, Zalewski A, Mannion JD, Diehl JT, Arafat H, Sarov-Blat L, O’Brien S, Keiper EA, Johnson AG, Martin J, Goldstein BJ, Shi Y (2003) Human epicardial adipose tissue is a source of inflammatory mediators. Circulation 108:2460–2466

    Article  PubMed  Google Scholar 

  20. Baker AR, Silva NF, Quinn DW, Harte AL, Pagano D, Bonser RS, Kumar S, McTernan PG (2006) Human epicardial adipose tissue expresses a pathogenic profile of adipocytokines in patients with cardiovascular disease. Cardiovasc Diabetol 5:1

    Article  PubMed Central  PubMed  Google Scholar 

  21. Iglesias MJ, Eiras S, Pineiro R, Lopez-Otero D, Gallego R, Fernandez AL, Lago F, Gonzalez-Juanatey JR (2006) Gender differences in adiponectin and leptin expression in epicardial and subcutaneous adipose tissue. Findings in patients undergoing cardiac surgery. Rev Esp Cardiol 59:1252–1260

    Article  PubMed  Google Scholar 

  22. Roubicek T, Dolinkova M, Blaha J, Haluzikova D, Bosanska L, Mraz M, Kremen J, Haluzik M (2008) Increased angiotensinogen production in epicardial adipose tissue during cardiac surgery: possible role in a postoperative insulin resistance. Physiol Res 57:911–917

    CAS  PubMed  Google Scholar 

  23. Bettencourt N, Toschke AM, Leite D, Rocha J, Carvalho M, Sampaio F, Xará S, Leite-Moreira A, Nagel E, Gama V (2012) Epicardial adipose tissue is an independent predictor of coronary atherosclerotic burden. Int J Cardiol 158:26–32

    Article  CAS  PubMed  Google Scholar 

  24. Alexopoulos N, McLean DS, Janik M, Arepalli CD, Stillman AE, Raggi P (2010) Epicardial adipose tissue and coronary artery plaque characteristics. Atherosclerosis 210:150–154

    Article  CAS  PubMed  Google Scholar 

  25. Djaberi R, Schuijf JD, van Werkhoven JM, Nucifora G, Jukema JW, Bax JJ (2008) Relation of epicardial adipose tissue to coronary atherosclerosis. Am J Cardiol 102:1602–1607

    Article  PubMed  Google Scholar 

  26. Xu Y, Cheng X, Hong K, Huang C, Wan L (2012) How to interpret epicardial adipose tissue as a cause of coronary artery disease: a meta-analysis. Coron Artery Dis 23:227–233

    Article  PubMed  Google Scholar 

  27. Jeong JW, Jeong MH, Yun KH, Oh SK, Park EM, Kim YK, Rhee SJ, Lee EM, Lee J, Yoo NJ, Kim NH, Park JC (2007) Echocardiographic epicardial fat thickness and coronary artery disease. Circ J 71:536–539

    Article  PubMed  Google Scholar 

  28. Iacobellis G, Assael F, Ribaudo MC, Zappaterreno A, Alessi G, Di Mario U, Leonetti F (2003) Epicardial fat from echocardiography: a new method for visceral adipose tissue prediction. Obes Res 11:304–310

    Article  PubMed  Google Scholar 

  29. Saura D, Oliva MJ, Rodriguez D, Pascual-Figal DA, Hurtado JA, Pinar E, de la Morena G, Valdés M (2010) Reproducibility of echocardiographic measurements of epicardial fat thickness. Int J Cardiol 141:311–313

    Article  PubMed  Google Scholar 

  30. Fluchter S, Haghi D, Dinter D, Heberlein W, Kuhl HP, Neff W, Sueselbeck T, Borggrefe M, Papavassiliu T (2007) Volumetric assessment of epicardial adipose tissue with cardiovascular magnetic resonance imaging. Obesity 15:870–878

    Article  PubMed  Google Scholar 

  31. Greif M, Becker A, von Ziegler F, Lebherz C, Lehrke M, Broedl UC, Tittus J, Parhofer K, Becker C, Reiser M, Knez A, Leber AW (2009) Pericardial adipose tissue determined by dual source CT is a risk factor for coronary atherosclerosis. Arterioscler Thromb Vasc Biol 29:781–786

    Article  CAS  PubMed  Google Scholar 

  32. Ding J, Kritchevsky SB, Harris TB, Burke GL, Detrano RC, Szklo M, Jeffrey Carr J (2008) The association of pericardial fat with calcified coronary plaque. Obesity 16:1914–1919

    Article  PubMed  Google Scholar 

  33. Taguchi R, Takasu J, Itani Y, Yamamoto R, Yokoyama K, Watanabe S, Masuda Y (2001) Pericardial fat accumulation in men as a risk factor for coronary artery disease. Atherosclerosis 157:203–209

    Article  CAS  PubMed  Google Scholar 

  34. Wheeler GLSR, Beck SR, Langefeld CD, Lenchik L, Wagenknecht LE, Freedman BI, Rich SS, Bowden DW, Chen MY, Carr JJ (2005) Pericardial and visceral adipose tissues measured volumetrically with computed tomography are highly associated in type 2 diabetic families. Invest Radiol 40:97–101

    Article  PubMed  Google Scholar 

  35. Park MJ, Jung JI, Oh YS, Youn HJ (2010) Assessment of epicardial fat volume with threshold-based 3-Dimensional segmentation in CT: comparison with the 2-dimensional short axis-based method. Korean Circ J 40:328–333

    Article  PubMed Central  PubMed  Google Scholar 

  36. Bastarrika G, Broncano J, Schoepf UJ, Schwarz F, Lee YS, Abro JA, Costello P, Zwerner PL (2010) Relationship between coronary artery disease and epicardial adipose tissue quantification at cardiac CT: comparison between automatic volumetric measurement and manual bidimensional estimation. Acad Radiol 17:727–734

    Article  PubMed  Google Scholar 

  37. Chaowalit N, Lopez-Jimenez F (2008) Epicardial adipose tissue: friendly companion or hazardous neighbour for adjacent coronary arteries? Eur Heart J 29:695–697

    Article  PubMed  Google Scholar 

  38. Okayama S, Ayako S, Somekawa S, Uemura S, Kubota Y, Saito Y (2011) Feasibility of dual gradient-echo in-phase and opposed-phase magnetic resonance imaging for the evaluation of epicardial fat. Acta Radiol 52:723–729

    Article  PubMed  Google Scholar 

  39. Saremi F, Mekhail S, Sefidbakht S, Thonar B, Malik S, Sarlaty T (2011) Quantification of epicardial adipose tissue: correlation of surface area and volume measurements. Acad Radiol 18:977–983

    Article  PubMed  Google Scholar 

  40. Corradi D, Maestri R, Callegari S, Pastori P, Goldoni M, Luong TV, Bordi C (2004) The ventricular epicardial fat is related to the myocardial mass in normal, ischemic and hypertrophic hearts. Cardiovasc Pathol 13:313–316

    Article  PubMed  Google Scholar 

  41. Schejbal V (1989) Epicardial fatty tissue of the right ventricle–morphology, morphometry and functional significance. Pneumologie 43:490–499

    CAS  PubMed  Google Scholar 

  42. Wang TD, Lee WJ, Shih FY, Huang CH, Chang YC, Chen WJ, Lee YT, Chen MF (2009) Relations of epicardial adipose tissue measured by multidetector computed tomography to components of the metabolic syndrome are region-specific and independent of anthropometric indexes and intraabdominal visceral fat. J Clin Endocrinol Metab 94:662–669

    Article  CAS  PubMed  Google Scholar 

  43. Budoff MJ, Achenbach S, Blumenthal RS, Carr JJ, Goldin JG, Greenland P, Guerci AD, Lima JA, Rader DJ, Rubin GD, Shaw LJ, Wiegers SE (2006) Assessment of coronary artery disease by cardiac computed tomography: a scientific statement from the American Heart Association Committee on Cardiovascular Imaging and Intervention, Council on Cardiovascular Radiology and Intervention, and Committee on Cardiac Imaging, Council on Clinical Cardiology. Circulation 114:1761–1791

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank to Moon-young Kim (INFINITT healthcare Inc) for applications support. We also thankful to S. Chen, PhD (Keck School of Medicine, University of Southern California) for the review of our report and Kyung-Mi Nam (The Catholic University of Korea) for data collection.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Se-Hong Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chung, JH., Kwon, BJ., Song, SW. et al. Epicardial adipose tissue: relationship between measurement location and metabolic syndrome. Int J Cardiovasc Imaging 30, 195–204 (2014). https://doi.org/10.1007/s10554-013-0308-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-013-0308-5

Keywords

Navigation