Skip to main content
Log in

Multidetector-row computed tomographic evaluation of myocardial perfusion in reperfused chronic myocardial infarction: value of color-coded perfusion map in a porcine model

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

We aimed to develop color-coded CT perfusion maps (CPM) of infarcted myocardium and assess the utility of CPM in evaluating ischemic heart disease on a cardiac multi-detector CT (MDCT) in a porcine reperfused-myocardial-infarction model. Myocardial infarctions were induced by 30 min occlusions of the proximal left anterior descending coronary artery (LAD) in 17 healthy adult female pigs. First-pass and 5 min-delayed cardiac MDCTs were performed after 4 weeks of LAD occlusion. Myocardial CPMs were obtained by using the CPM program. Triphenyltetrazolium chloride (TTC)-staining was performed on the cardiac specimens. We analyzed the intermodality agreement on the size and location of the myocardial infarctions. TTC staining revealed myocardial infarction in 16 of 17 pigs, and 15 of these (94%) showed matched infarcts on the CPM and first-pass images. The areas of perfusion deficit noted in early arterial phase images and CPM coincided exactly with the areas of poor TTC staining in 12 of 15 pigs (80%). In the three remaining pigs, the areas of poor TTC staining were larger than those of a perfusion deficit demonstrated by either early arterial phase images or CPM. The agreement between these tests is calculated to be moderate to good (k = 0.736, P < 0.05). Ten myocardial segments in 4 of the 15 pigs (27%) with hypoattenuated myocardium showed a delayed enhancement on the 5 min-delayed images. Contrast-enhanced MDCT was useful and accurate in detecting chronic myocardial infarction; CPM was helpful in visualizing the infarcted myocardium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gersh BJ, Anderson JL (1993) Thrombolysis and myocardial salvage. results of clinical trials and the animal paradigm—paradoxic or predictable? Circulation 8(1):296–306

    Google Scholar 

  2. Kim RJ, Fieno DS, Parrish TB et al (1999) Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation 100(19):1992–2002

    PubMed  CAS  Google Scholar 

  3. Lee JK, Kim Y, Lee SW et al (2006) Occlusive acute myocardial infarct on 16 multidetector-row helical CT: an experimental study in rabbits. J Korean Radiol Soc 55(3):221–228 Korean

    Google Scholar 

  4. Kim RJ, Wu E, Rafael A et al (2000) The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med 343(20):1445–1453. doi:10.1056/NEJM200011163432003

    Article  PubMed  CAS  Google Scholar 

  5. Lund GK, Stork A, Saeed M et al (2004) Acute myocaridal infarction: evaluation with first-pass enhancement and delayed enhancement MR imaging compared with 201Tl SPECT imaging. Radiology 232(1):49–57. doi:10.1148/radiol.2321031127

    Article  PubMed  Google Scholar 

  6. Kitagawa K, Sakuma H, Hirano T et al (2003) Acute myocardial infarction: myocardial viability assessment in patients early thereafter comparison of contrast-enhanced MR imaging with resting (201)Tl SPECT. Radiology 226(1):138–144. doi:10.1148/radiol.2261012108

    Article  PubMed  Google Scholar 

  7. Hilfiker PR, Weishaupt D, Marincek B (2001) Multislice spiral computed tomography of subacute myocardial infarction. Circulation 104(9):1083. doi:10.1161/hc3401.093639

    Article  PubMed  CAS  Google Scholar 

  8. Paul JF, Dambrin G, Caussin C et al (2003) Sixteen-slice computed tomography after acute myocardial infarction: from perfusion defect to the culprit lesion. Circulation 108(3):373–374. doi:10.1161/01.CIR.0000075092.94870.57

    Article  PubMed  Google Scholar 

  9. Gosalia A, Haramati LB, Sheth MP et al (2004) CT detection of acute myocardial infarction. AJR Am J Roentgenol 182(6):1563–1566

    PubMed  Google Scholar 

  10. Koyama Y, Matsuoka H, Mochizuki T et al (2005) Assessment of reperfused acute myocaridal infarction with two-phase contrast-enhanced helical CT: prediction of left ventricular function and wall thickness. Radiology 235(3):804–811. doi:10.1148/radiol.2353030441

    Article  PubMed  Google Scholar 

  11. Hoffmann U, Millea R, Enzweiler C et al (2004) Acute myocardial infarction: contrast-enhanced multi-detector row CT in a porcine model. Radiology 231(3):697–701. doi:10.1148/radiol.2313030132

    Article  PubMed  Google Scholar 

  12. Kim W, Jeong MH, Hong YJ et al (2004) A new porcine model of ischemic heart failure and pathologic findings by intra-coronary injection of ethanol. Korean Circ J 34(9):900–908 Korean

    Google Scholar 

  13. Lim SY, Jeong MH, Ahn YK et al (2005) The effect of mesenchymal stem cells transduced with Akt in a porcine myocardial infarction model. Korean Circ J 35(10):734–741 Korean

    Google Scholar 

  14. Abe M, Kazatani Y, Fukuda H et al (2000) Left ventricular volumes, ejection fraction, and regional wall motion calculated with gated technetium-99 m tetrofosmin SPECT in reperfused acute myocardial infarction at super-acute phase: comparison with left ventriculography. J Nucl Cardiol 7(6):569–574. doi:10.1067/mnc.2000.108607

    Article  PubMed  CAS  Google Scholar 

  15. Watanabe K, Sekiya M, Ikeda S et al (1997) Comparison of adenosine triphosphate and dipyridamole in diagnosis by thallium-201 myocardial scintigraphy. J Nucl Med 38(4):577–581

    PubMed  CAS  Google Scholar 

  16. Al-Saadi N, Nagel E, Gross M et al (2000) Noninvasive detection of myocardial ischemia from perfusion reserve based on cardiovascular magnetic resonance. Circulation 101(12):1379–1383

    PubMed  CAS  Google Scholar 

  17. Rogers WJ Jr, Kramer CM, Geskin G et al (1999) Early contrast-enhanced MRI predicts late functional recovery after reperfused myocardial infarction. Circulation 99(6):744–750

    PubMed  Google Scholar 

  18. Bogaert J, Maes A, de Werf FV et al (1999) Functional recovery of subepicardial myocardial tissue in transmural myocardial infarction after successful reperfusion: an important contribution to the improvement of regional and global left ventricular function. Circulation 99(1):36–43

    PubMed  CAS  Google Scholar 

  19. Ito H, Tomooka T, Sakai N et al (1992) Lack of myocardial perfusion immediately after successful thrombolysis. a predictor of poor recovery of left ventricular function in anterior myocardial infarction. Circulation 85(5):1699–1705

    PubMed  CAS  Google Scholar 

  20. Braunwald E, Kloner RA (1985) Myocardial reperfusion: a double-edged sword? J Clin Invest 76(5):1713–1719. doi:10.1172/JCI112160

    Article  PubMed  CAS  Google Scholar 

  21. Kloner RA, Ganote CE, Jennings RB (1974) The “no-reflow” phenomenon after temporary coronary occlusion in the dog. J Clin Invest 54(6):1496–1508. doi:10.1172/JCI107898

    Article  PubMed  CAS  Google Scholar 

  22. Naito H, Saito H, Ohta M et al (1990) Significance of ultrafast computed tomography in cardiac imaging: usefulness in assessment of myocardial characteristics and cardiac function. Jpn Circ J 54(3):322–327

    PubMed  CAS  Google Scholar 

  23. Lee KS, Marwick TH, Cook SA et al (1994) Prognosis of patients with left ventricular dysfunction, with and without viable myocardium after myocardial infarction. relative efficacy of medical therapy and revacularization. Circulation 90(6):2687–2694

    PubMed  CAS  Google Scholar 

  24. De Roos A, van Rossum AC, van der Wall E et al (1989) Reperfused and nonreperfused myocardial infarction: diagnostic potential of Gd-DTPA-enhanced MR imaging. Radiology 172(3):717–720

    PubMed  Google Scholar 

  25. Lima JA, Judd RM, Bazille A et al (1995) Regional heterogeneity of human myocardial infarcts demonstrated by contrast-enhanced MRI. potential mechanisims. Circulation 92(5):1117–1125

    PubMed  CAS  Google Scholar 

  26. Gerber BL, Garot J, Bluemke DA et al (2002) Accuracy of contrast-enhanced magnetic resonance imaging in predicting improvement of regional myocardial function in patients after acute myocardial infarction. Circulation 106(9):1083–1089. doi:10.1161/01.CIR.0000027818.15792.1E

    Article  PubMed  Google Scholar 

  27. Beek AM, Kuhl HP, Bondarenko O et al (2003) Delayed contrast-enhanced magnetic resonance imaging for the prediction of regional functional improvement after acute myocardial infarction. J Am Coll Cardiol 42(5):895–901. doi:10.1016/S0735-1097(03)00835-0

    Article  PubMed  Google Scholar 

  28. Choe YH, Choo KS, Jeon E-S et al (2008) Comparison of MDCT and MRI in the detection and sizing of acute and chronic myocardial infarcts. Eur J Radiol 66:292–299. doi:10.1016/j.ejrad.2007.06.010

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun-Hyeon Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yim, N.Y., Kim, YH., Choi, S. et al. Multidetector-row computed tomographic evaluation of myocardial perfusion in reperfused chronic myocardial infarction: value of color-coded perfusion map in a porcine model. Int J Cardiovasc Imaging 25 (Suppl 1), 65–74 (2009). https://doi.org/10.1007/s10554-008-9411-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-008-9411-4

Keywords

Navigation