Skip to main content
Log in

A modified rabbit model of reperfused myocardial infarction for cardiac MR imaging research

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

We sought to obtain a rabbit myocardial infarction (MI) model for research with cardiac magnetic resonance imaging (cMRI) by overcoming a few technical difficulties. A novel endotracheal method was developed for intubation and ventilation. Fourteen rabbits were divided into group-1 (= 8) with open-chest occlusion of left circumflex coronary artery and closed-chest reperfusion, and group-2 (n = 6) of non-ischemic control; and received ECG-triggered cMRI with delayed contrast enhancement (DE-cMRI) at a 1.5 T clinical scanner. The MI areas in group-1 were morphometrically compared between DE-cMRI and histochemically stained specimens. Left ventricular (LV) functions were compared between two groups.The success rate of intubation and reperfused MI was 8/8 and 6/8, respectively. Global and regional LV functions significantly decreased in group-1 as evidenced by significant hypokinesis of lateral LV-wall and wall thickening (< 0.001). Mean MI-area was 19.41 ± 21.92% on DE-cMRI and 19.10 ± 22.61% with histochemical staining (r = 0.985). Global MI-volume was 17.92 ± 7.42% on DE-cMRI and 16.62 ± 7.16% with histochemistry (r = 0.994). The usefulness of this model was successfully tested for assessing a new contrast agent. The present rabbit MI model may offer a practical platform for more translational research using clinical MRI-facilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Amado LC, Gerber BL, Gupta SN et al (2004) Accurate and objective infarct sizing by contrast-enhanced magnetic resonance imaging in a canine myocardial infarction model. J Am Coll Cardiol 44(12):2383–2389. doi:10.1016/j.jacc.2004.09.020

    Article  PubMed  Google Scholar 

  2. Storey P, Chen Q, Li W et al (2006) Magnetic resonance imaging of myocardial infarction using a manganese-based contrast agent (EVP 1001-1): preliminary results in a dog model. J Magn Reson Imaging 23(2):228–234. doi:10.1002/jmri.20500

    Article  PubMed  Google Scholar 

  3. Zhou XH, Li LD, Wu LM et al (2007) A minimally invasive model of myocardial infarction made by video-assisted thoracoscopic surgery. Methods Find Exp Clin Pharmacol 29(4):283–290. doi:10.1358/mf.2007.29.4.1075359

    Article  PubMed  Google Scholar 

  4. Hoit BD (2001) New approaches to phenotypic analysis in adult mice. J Mol Cell Cardiol 33:27–35. doi:10.1006/jmcc.2000.1294

    Article  PubMed  CAS  Google Scholar 

  5. Saeed M, Bremerich J, Wendland MF et al (1999) Reperfused myocardial infarction as seen with use of necrosis-specific versus standard extracellular MR contrast media in rats. Radiology 213:247–257

    PubMed  CAS  Google Scholar 

  6. Vallee JP, Ivancevic MK, Nguyen D, Morel DR, Jaconi M (2004) Current status of cardiac MRI in small animals. MAGMA 17:149–156. doi:10.1007/s10334-004-0066-4

    Article  PubMed  Google Scholar 

  7. Marcu CB, Beek AM, van Rossum AC (2006) Clinical applications of cardiaovascular magnetic resonance imaging. CMAJ 175(8):911–917. doi:10.1503/cmaj.060566

    PubMed  Google Scholar 

  8. Yang Z, Berr SS, Gilson WD, Toufektsian M-C, French BA (2004) Simultaneous evaluation of infarct size and cardiac function in intact mice by contrast-enhanced cardiac magnetic resonance imaging reveals contractile dysfunction in noninfarcted regions early after myocardial infarction. Circulation 109:1161–1167. doi:10.1161/01.CIR.0000118495.88442.32

    Article  PubMed  Google Scholar 

  9. Oshinski JN, Yang Z, Jones JR, Mata JF, French BA (2001) Imaging time after Gd-DTPA injection is critical in using delayed enhancement to determine infarct size accurately with magnetic resonance imaging. Circulation 104:2838–2842. doi:10.1161/hc4801.100351

    Article  PubMed  CAS  Google Scholar 

  10. Judd RM, Kim RJ, Oshinski JN et al (2002) Imaging time after Gd-DTPA injection is critical in using delayed enhancement to determine infarct size accurately with magnetic resonance imaging response. Circulation 106:6e. doi:10.1161/01.CIR.0000019903.37922.9C

    Article  Google Scholar 

  11. Bremerich J, Saeed M, Arheden H, Higgins CB, Wendland MF (2000 ) Normal and infarcted myocardium: differentiation with cellular uptake of manganese at MR imaging in a rat model. Radiology 216:524–530

    PubMed  CAS  Google Scholar 

  12. Wyttenbach R, Saeed M, Wendland MF et al (1999) Detection of acute myocardial ischemia using first-pass dynamics of MnDPDP on inversion recovery echoplanar imaging. J Magn Reson Imaging 9:209–214. doi:10.1002/(SICI)1522-2586(199902)9:2<209::AID-JMRI9>3.0.CO;2-E

    Article  PubMed  CAS  Google Scholar 

  13. Fujita M, Morimoto Y, Ishihara M et al (2004) A new rabbit model of myocardial infarction without endotracheal intubation. J Surg Res 116:124–128. doi:10.1016/S0022-4804(03)00304-4

    Article  PubMed  Google Scholar 

  14. Alexander DJ (1980) A simple method of oral endotracheal intubation in rabbits. Lab Anim Sci 30:871–873

    PubMed  CAS  Google Scholar 

  15. Kruger J, Zeller W, Schottmann E (1994) A simplified procedure for endotracheal intubation in rabbits. Lab Anim 28:176–177. doi:10.1258/002367794780745281

    Article  PubMed  CAS  Google Scholar 

  16. Davies A, Dallak M, Moores C (1996) Oral endotracheal intubation of rabbits (Oryctolagus cuniiculus). Lab Anim 20:182–183. doi:10.1258/002367796780865772

    Article  Google Scholar 

  17. Ni Y (2008) Metalloporphyrins and functional analogues as mri contrast agents. Curr Med Imaging Rev 4:96–112. doi:10.2174/157340508784356789

    Article  CAS  Google Scholar 

  18. Marchal G, Ni Y, Herijgers P, Flameng W, Petré C, Bosmans H, Yu J, Ebert W, Hilger CS, Pfefferer D, Semmler W, Baert AL (1996) Paramagnetic metalloporphyrins: infarct avid contrast agents for diagnosis of acute myocardial infarction by magnetic resonance imaging. Eur Radiol 6:1–8. doi:10.1007/BF00619942

    Article  Google Scholar 

  19. Pislaru SV, Ni Y, Pislaru C, Bosmans H, Miao Y, Bogaert J, Dymarkowski S, Semmler W, Marchal G, Van de Werf FJ (1999) Noninvasive measurements of infarct size after thrombolysis with a necrosis-avid MRI contrast agent. Circulation 99(5):690–696

    PubMed  CAS  Google Scholar 

  20. Dymarkowski S, Ni Y, Miao Y, Bogaert J, Rademakers FE, Bosmans H, Speck U, Semmler W, Marchal G (2002) Value of T2-weighted MRI early after myocardial infarction in dogs: comparison with bis-gadolinium-mesoporphyrin enhanced T1-weighted MRI and functional data from cine MRI. Invest Radiol 37:77–85. doi:10.1097/00004424-200202000-00005

    Article  PubMed  Google Scholar 

  21. Ni Y, Pislaru C, Bosmans H, Pislaru S, Miao Y, Bogaert J, Dymarkowski S, Yu J, Semmler W, Van de Werf F, Baert AL, Marchal G (2001) Intracoronary delivery of Gd-DTPA and Gadophrin-2 for determination of myocardial viability with MR imaging. Eur Radiol 11:876–883. doi:10.1007/s003300000791

    Article  PubMed  CAS  Google Scholar 

  22. Jin JY, Teng GJ, Feng Y et al (2007) Magnetic resonance imaging of acute reperfused myocardial infarction: intraindividual comparison of ECIII-60 and Gd-DTPA in a swine model. Card Inter Radiol 30:248–256. doi:10.1007/s00270-006-0004-0

    Article  Google Scholar 

  23. Ni YC, Bormans G, Chen F, Verbruggen A, Marchal G (2005) Necrosis Avid Contrast Agents functional similarity versus structural diversity. Invest Radiol 40:526–535. doi:10.1097/01.rli.0000171811.48991.5a

    Article  PubMed  CAS  Google Scholar 

  24. Fonge H, Vunckx K, Wang H et al (2008) Noninvasive detection and quantification of acute myocardial infarction in rabbits using mono-[123I] iodohypericin μSPECT. Eur Heart J 29:260–269. doi:10.1093/eurheartj/ehm588

    Article  PubMed  CAS  Google Scholar 

  25. Zvara DA, Galaska HJ, Castellano VP et al (1997) Cloricromene reduces myocardial infarct size in rabbits when administered during the early reperfusion period. Anesth Analg 84:266–270. doi:10.1097/00000539-199702000-00006

    Article  PubMed  CAS  Google Scholar 

  26. Rudin M, Allegrini PR, Beckmann N, Ekatodramis D, Laurent D (2000) In vivo cardiac studies in animals using magnetic resonance techniques: experimental aspects and MR readouts. MAGMA 11:33–35. doi:10.1007/BF02678487

    Article  PubMed  CAS  Google Scholar 

  27. Cassidy PJ, Schneider JE, Grieve SM, Lygate C, Neubauer S, Clarke K (2004) Assessment of motion gating strategies for mouse magnetic resonance at high magnetic fields. J Magn Reson Imaging 19:229–237. doi:10.1002/jmri.10454

    Article  PubMed  Google Scholar 

  28. Schneider JE, Cassidy PJ, Lygate C et al (2003) Fast, high-resolution in vivo cine magnetic resonance imaging in normal and failing mouse hearts on a vertical 11.7T system. J Magn Reson Imaging 18:691–701. doi:10.1002/jmri.10411

    Article  PubMed  Google Scholar 

  29. Szigligeti P, Pankucsi C, Banyasz T, Varro A, Nanasi PP (1996) Action potential duration and force-frequency relationship in isolated rabbit, guinea pig and rat cardiac muscle. J Comp Physiol 166:150–155

    CAS  Google Scholar 

  30. Van Bilsen M, Chien KR (1993) Growth and hypertrophy of the heart: towards an understanding of cardiac specific and inducible gene expression. Cardiovasc Res 27:1140–1149. doi:10.1093/cvr/27.7.1140

    Article  PubMed  Google Scholar 

  31. Mahaffey KW, Raya TE, Pennock GD, Morkin E, Goldman S (1995) Left ventricular performance and remodeling in rabbits after myocardial infarction. Effects of a thyroid hormone analogue. Circulation 91:794–801

    PubMed  CAS  Google Scholar 

  32. Bers DM (2002) Cardiac excitation-contraction coupling. Nature 415:198–200. doi:10.1038/415198a

    Article  PubMed  CAS  Google Scholar 

  33. Choi SH, Lee SS, Choi SII et al (2001) Occlusive myocardial infarction: investigation of bis-Gadolinium mesoporphyrins-enhanced T1-weighted MR imaging in a cat model. Radiology 220:436–440

    PubMed  CAS  Google Scholar 

  34. Shiomi M, Ito T, Yamada S, Kawashima S, Fan J (2003) Development of an animal model for spontaneous myocardial infarction (WHHLMI rabbit). Arterioscler Thromb Vasc Biol 23(7):1239–1244. doi:10.1161/01.ATV.0000075947.28567.50

    Article  PubMed  CAS  Google Scholar 

  35. Barkhausen J, Ebert W, Debatin JF, Weinmann H-J (2002) Imaging of myocardial infarction: comparison of magnevist and gadophrin-3 in rabbits. J Am Coll Cardiol 39:1392–1398. doi:10.1016/S0735-1097(02)01777-1

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Shanghai Chemrole Co., Ltd, China for providing batches of nonporphyrin NACAs in our in vivo testing and to RF Therapeutics Inc., Canada for chemical refinement of NACAs. This study is jointly supported by the research funds of OT/96/33 and OT/06/70 from K. U. Leuven, Belgium; FWO G.0247.05, FWO G.0257.05 and FWO major financing (ZWAP/05/018) from Flemish government of Belgium; and a EU project Asia-Link CfP 2006-EuropeAid/123738/C/ACT/Multi-Proposal No. 128-498/111.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yicheng Ni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, Y., Xie, Y., Wang, H. et al. A modified rabbit model of reperfused myocardial infarction for cardiac MR imaging research. Int J Cardiovasc Imaging 25, 289–298 (2009). https://doi.org/10.1007/s10554-008-9393-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-008-9393-2

Keywords

Navigation