Skip to main content

Advertisement

Log in

Plasma B-vitamins and one-carbon metabolites and the risk of breast cancer in younger women

  • Epidemiology
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose

We examined the association of plasma B-vitamins and metabolites, and related genetic variants, with risk of breast cancer among predominantly premenopausal women.

Methods

We conducted a nested case–control study within the Nurses’ Health Study II. From blood samples collected in 1996–1999 and follow-up through 2007, plasma measures were available for 610 cases and 1207 controls. Unconditional multivariable logistic regression was used to estimate relative risks (RR) of breast cancer and 95% confidence intervals (CIs). We examined whether associations varied by methylenetetrahydrofolate reductase (MTHFR) and dihydrofolate reductase polymorphisms, breast cancer risk factors, or tumor characteristics.

Results

Plasma vitamin B12 was associated with a 64% higher risk of breast cancer comparing the highest versus lowest quintile (95% CI 1.17–2.29, p-trend = 0.02). Plasma folate (comparable RR = 1.18, 95% CI 0.84–1.66), pyridoxal 5′-phosphate (RR = 1.18, 95% CI 0.85–1.64), homocysteine (RR = 0.93, 95% CI 0.67–1.28), cysteine (RR = 1.14, 95% CI 0.81–1.62), and cysteinylglycine (RR = 0.93, 95% CI 0.66–1.31) were not associated with overall breast cancer risk. Folate was significantly positively associated with invasive and estrogen receptor-positive/progesterone receptor-positive breast cancer, and this association was suggestively stronger for bloods collected post-fortification. Several nutrient/breast cancer associations varied across subgroups defined by age, smoking, alcohol, multivitamin use, and MTHFR status (p-interaction < 0.05).

Conclusions

Overall, plasma B-vitamins and metabolites were not associated with lower breast cancer risk. Plasma vitamin B-12 was positively associated with higher risk of overall breast cancer, and plasma folate was positively associated with risk of invasive breast cancer. Additionally, there may be associations in subgroups defined by related genetic variants, breast cancer risk factors, and tumor factors. Further studies in younger women and in the post-fortification era are needed to confirm these findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data are from the Nurses’ Health Study II. Requests for data access can be made to the Data Access Committee via http://www.nurseshealthstudy.org/researchers.

References

  1. Scott JM, Weir DG (1998) Folic acid, homocysteine and one-carbon metabolism: a review of the essential biochemistry. J Cardiovasc Risk 5:223–227

    Article  CAS  PubMed  Google Scholar 

  2. Mason JB (2003) Biomarkers of nutrient exposure and status in one-carbon (methyl) metabolism. J Nutr 133(Suppl 3):941S–947S

    Article  CAS  PubMed  Google Scholar 

  3. Nazki FH, Sameer AS, Ganaie BA (2014) Folate: metabolism, genes, polymorphisms and the associated diseases. Gene 533:11–20. https://doi.org/10.1016/j.gene.2013.09.063

    Article  CAS  PubMed  Google Scholar 

  4. Newman AC, Maddocks ODK (2017) One-carbon metabolism in cancer. Br J Cancer 116:1499–1504. https://doi.org/10.1038/bjc.2017.118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Xu X, Gammon MD, Wetmur JG et al (2007) A functional 19-base pair deletion polymorphism of dihydrofolate reductase (DHFR) and risk of breast cancer in multivitamin users. Am J Clin Nutr 85:1098–1102

    Article  CAS  PubMed  Google Scholar 

  6. Johnson WG, Stenroos ES, Spychala JR et al (2004) New 19 bp deletion polymorphism in intron-1 of dihydrofolate reductase (DHFR): a risk factor for spina bifida acting in mothers during pregnancy? Am J Med Genet A 124A:339–345. https://doi.org/10.1002/ajmg.a.20505

    Article  PubMed  Google Scholar 

  7. Farnham PJ, Means AL (1990) Sequences downstream of the transcription initiation site modulate the activity of the murine dihydrofolate reductase promoter. Mol Cell Biol 10:1390–1398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Frosst P, Blom HJ, Milos R et al (1995) A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet 10:111–113. https://doi.org/10.1038/ng0595-111

    Article  CAS  PubMed  Google Scholar 

  9. van der Put NM, Gabreëls F, Stevens EM et al (1998) A second common mutation in the methylenetetrahydrofolate reductase gene: an additional risk factor for neural-tube defects? Am J Hum Genet 62:1044–1051. https://doi.org/10.1086/301825

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ericson U, Borgquist S, Ivarsson MIL et al (2010) Plasma folate concentrations are positively associated with risk of estrogen receptor beta negative breast cancer in a Swedish nested case control study. J Nutr 140:1661–1668. https://doi.org/10.3945/jn.110.124313

    Article  CAS  PubMed  Google Scholar 

  11. Cooper AJ (1983) Biochemistry of sulfur-containing amino acids. Annu Rev Biochem 52:187–222. https://doi.org/10.1146/annurev.bi.52.070183.001155

    Article  CAS  PubMed  Google Scholar 

  12. Brosnan JT, Brosnan ME (2006) The sulfur-containing amino acids: an overview. J Nutr 136:1636S–1640S

    Article  CAS  PubMed  Google Scholar 

  13. Hayes JD, McLellan LI (1999) Glutathione and glutathione-dependent enzymes represent a co-ordinately regulated defence against oxidative stress. Free Radic Res 31:273–300

    Article  CAS  PubMed  Google Scholar 

  14. Faintuch J, Aguilar PB, Nadalin W (1999) Relevance of N-acetylcysteine in clinical practice: fact, myth or consequence? Nutr Burbank Los Angel Cty Calif 15:177–179

    Article  CAS  Google Scholar 

  15. Calaf GM, Urzua U, Termini L, Aguayo F (2018) Oxidative stress in female cancers. Oncotarget 9:23824–23842. https://doi.org/10.18632/oncotarget.25323

  16. Paolicchi A, Dominici S, Pieri L et al (2002) Glutathione catabolism as a signaling mechanism. Biochem Pharmacol 64:1027–1035

    Article  CAS  PubMed  Google Scholar 

  17. Agnoli C, Grioni S, Krogh V et al (2016) Plasma riboflavin and vitamin B-6, but not homocysteine, folate, or vitamin B-12, are inversely associated with breast cancer risk in the european prospective investigation into cancer and nutrition-varese cohort. J Nutr 146:1227–1234. https://doi.org/10.3945/jn.115.225433

    Article  CAS  PubMed  Google Scholar 

  18. Wu K, Helzlsouer KJ, Comstock GW et al (1999) A prospective study on folate, B12, and pyridoxal 5′-phosphate (B6) and breast cancer. Cancer Epidemiol Biomarkers Prev 8:209–217

    CAS  PubMed  Google Scholar 

  19. Lin J, Lee I-M, Cook NR et al (2008) Plasma folate, vitamin B-6, vitamin B-12, and risk of breast cancer in women. Am J Clin Nutr 87:734–743

    Article  CAS  PubMed  Google Scholar 

  20. Tworoger SS, Sluss P, Hankinson SE (2006) Association between plasma prolactin concentrations and risk of breast cancer among predominately premenopausal women. Cancer Res 66:2476–2482. https://doi.org/10.1158/0008-5472.CAN-05-3369

    Article  CAS  PubMed  Google Scholar 

  21. Tamimi RM, Baer HJ, Marotti J et al (2008) Comparison of molecular phenotypes of ductal carcinoma in situ and invasive breast cancer. Breast Cancer Res BCR 10:R67. https://doi.org/10.1186/bcr2128

    Article  CAS  PubMed  Google Scholar 

  22. Collins LC, Marotti JD, Baer HJ, Tamimi RM (2008) Comparison of estrogen receptor results from pathology reports with results from central laboratory testing. J Natl Cancer Inst 100:218–221. https://doi.org/10.1093/jnci/djm270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Araki A, Sako Y (1987) Determination of free and total homocysteine in human plasma by high-performance liquid chromatography with fluorescence detection. J Chromatogr 422:43–52

    Article  CAS  PubMed  Google Scholar 

  24. Shin-Buehring YS, Rasshofer R, Endres W (1981) A new enzymatic method for pyridoxal-5-phosphate determination. J Inherit Metab Dis 4:123–124. https://doi.org/10.1007/BF02263621

    Article  CAS  Google Scholar 

  25. Rosner B, Cook N, Portman R et al (2008) Determination of blood pressure percentiles in normal-weight children: some methodological issues. Am J Epidemiol 167:653–666. https://doi.org/10.1093/aje/kwm348

    Article  CAS  PubMed  Google Scholar 

  26. Wang M, Spiegelman D, Kuchiba A et al (2016) Statistical methods for studying disease subtype heterogeneity. Stat Med 35:782–800. https://doi.org/10.1002/sim.6793

    Article  PubMed  Google Scholar 

  27. Lee JE, Wei EK, Fuchs CS et al (2012) Plasma folate, methylenetetrahydrofolate reductase (MTHFR), and colorectal cancer risk in three large nested case-control studies. Cancer Causes Control CCC 23:537–545. https://doi.org/10.1007/s10552-012-9911-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kim SJ, Zuchniak A, Sohn K-J et al (2016) Plasma folate, vitamin B-6, and vitamin B-12 and breast cancer risk in BRCA1- and BRCA2-mutation carriers: a prospective study. Am J Clin Nutr 104:671–677. https://doi.org/10.3945/ajcn.116.133470

    Article  CAS  PubMed  Google Scholar 

  29. Matejcic M, de Batlle J, Ricci C et al (2017) Biomarkers of folate and vitamin B12 and breast cancer risk: report from the EPIC cohort. Int J Cancer 140:1246–1259. https://doi.org/10.1002/ijc.30536

    Article  CAS  PubMed  Google Scholar 

  30. Houghton SC, Eliassen AH, Zhang SM et al (2019) Plasma B-vitamin and one-carbon metabolites and risk of breast cancer before and after folic acid fortification in the US. Int J Cancer 144:1929–1940. https://doi.org/10.1002/ijc.31934

    Article  CAS  PubMed  Google Scholar 

  31. Cho E, Spiegelman D, Hunter DJ et al (2003) Premenopausal fat intake and risk of breast cancer. J Natl Cancer Inst 95:1079–1085

    Article  PubMed  Google Scholar 

  32. Cho E, Chen WY, Hunter DJ et al (2006) Red meat intake and risk of breast cancer among premenopausal women. Arch Intern Med 166:2253–2259. https://doi.org/10.1001/archinte.166.20.2253

    Article  PubMed  Google Scholar 

  33. Farvid MS, Cho E, Chen WY et al (2014) Premenopausal dietary fat in relation to pre- and post-menopausal breast cancer. Breast Cancer Res Treat 145:255–265. https://doi.org/10.1007/s10549-014-2895-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Arendt JFB, Nexo E (2012) Cobalamin Related Parameters and Disease Patterns in Patients with Increased Serum Cobalamin Levels. PLoS ONE. https://doi.org/10.1371/journal.pone.0045979

    Article  PubMed  PubMed Central  Google Scholar 

  35. Arendt JFB, Pedersen L, Nexo E, Sørensen HT (2013) Elevated plasma vitamin B12 levels as a marker for cancer: A population-based cohort study. JNCI J Natl Cancer Inst 105:1799–1805. https://doi.org/10.1093/jnci/djt315

    Article  CAS  PubMed  Google Scholar 

  36. Arendt JF, Sorensen HT, Horsfall LJ, Petersen I (2019) Elevated vitamin B12 levels and cancer risk in UK primary care: a THIN database cohort study. Cancer Epidemiol Biomark Prev Publ Am Assoc Cancer Res Cosponsored Am Soc Prev Oncol. https://doi.org/10.1158/1055-9965.EPI-17-1136

    Article  Google Scholar 

  37. Lin J, Manson JE, Selhub J et al (2007) Plasma cysteinylglycine levels and breast cancer risk in women. Cancer Res 67:11123–11127. https://doi.org/10.1158/0008-5472.CAN-07-3061

    Article  CAS  PubMed  Google Scholar 

  38. Lin J, Lee I-M, Song Y et al (2010) Plasma homocysteine and cysteine and risk of breast cancer in women. Cancer Res 70:2397–2405. https://doi.org/10.1158/0008-5472.CAN-09-3648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chen P, Li C, Li X et al (2014) Higher dietary folate intake reduces the breast cancer risk: a systematic review and meta-analysis. Br J Cancer 110:2327–2338. https://doi.org/10.1038/bjc.2014.155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Patterson RA, Lamb DJ, Leake DS (2003) Mechanisms by which cysteine can inhibit or promote the oxidation of low density lipoprotein by copper. Atherosclerosis 169:87–94

    Article  CAS  PubMed  Google Scholar 

  41. Stipanuk MH, Dominy JE, Lee J-I, Coloso RM (2006) Mammalian cysteine metabolism: new insights into regulation of cysteine metabolism. J Nutr 136:1652S–1659S

    Article  CAS  PubMed  Google Scholar 

  42. Jansen E, Beekhof P, Tamosiunas A et al (2015) Biomarkers of oxidative stress and redox status in a short-term low-dosed multivitamin and mineral supplementation study in two human age groups. Biogerontology 16:645–653. https://doi.org/10.1007/s10522-015-9568-x

    Article  CAS  PubMed  Google Scholar 

  43. Bravatà V (2015) Controversial roles of methylenetetrahydrofolate reductase polymorphisms and folate in breast cancer disease. Int J Food Sci Nutr 66:43–49. https://doi.org/10.3109/09637486.2014.959896

    Article  CAS  PubMed  Google Scholar 

  44. Song J, Sohn KJ, Medline A et al (2000) Chemopreventive effects of dietary folate on intestinal polyps in Apc ± Msh2-/- mice. Cancer Res 60:3191–3199

    CAS  PubMed  Google Scholar 

  45. Song J, Medline A, Mason JB et al (2000) Effects of dietary folate on intestinal tumorigenesis in the apcMin mouse. Cancer Res 60:5434–5440

    CAS  PubMed  Google Scholar 

  46. Mason JB (2011) Unraveling the complex relationship between folate and cancer risk. BioFactors Oxf Engl 37:253–260. https://doi.org/10.1002/biof.174

    Article  CAS  Google Scholar 

  47. Kalmbach RD, Choumenkovitch SF, Troen AM et al (2008) Circulating folic acid in plasma: relation to folic acid fortification. Am J Clin Nutr 88:763–768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank the participants and staff of the Nurses’ Health Study II for their valuable contributions as well as the following state cancer registries for their help: AL, AZ, AR, CA, CO, CT, DE, FL, GA, ID, IL, IN, IA, KY, LA, ME, MD, MA, MI, NE, NH, NJ, NY, NC, ND, OH, OK, OR, PA, RI, SC, TN, TX, VA, WA, and WY. The authors assume full responsibility for analyses and interpretation of these data.

Funding

The Nurses’ Health Study II is supported by the National Institutes of Health (UM1 CA176726, R01 CA67262, R01 CA050385). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serena C. Houghton.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

The study protocol was approved by the institutional review boards of the Brigham and Women’s Hospital and Harvard T.H. Chan School of Public Health, and those of participating registries as required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 31 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Houghton, S.C., Eliassen, A.H., Zhang, S.M. et al. Plasma B-vitamins and one-carbon metabolites and the risk of breast cancer in younger women. Breast Cancer Res Treat 176, 191–203 (2019). https://doi.org/10.1007/s10549-019-05223-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-019-05223-x

Keywords

Navigation